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Subject: Ant Colony Optimization and simulation 

 

Ant colonies use indirect communication based on pheromone deposits to determine the shortest path 

between the nest and a food source. This method, called Ant Colony Optimization (ACO) is currently 

being used in several traffic models. Simulation is an ideally suitable tool to study this method. 

This computer assignment consists of studying the ACO theory and developing and building a 

simulation model which can determine the shortest path between two points  in any given (road) 

network, using ACO. In other words, artificial ants should solve the shortest-path problem on any 

undirected graph. 

 

The value of several necessary parameters such as the pheromone evaporation rate needs to be 

determined using ACO theory and/or model and parameter tuning. A 2D animation depicting the 

course of the process in time is an additional requirement. 

 

The report should comply with the guidelines of the section. Details can be found on the website. 

 

The professor, 
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Summary 

One of the most surprising behavioral patterns that ants exercise is the ability to find the shortest path 

to a food source. Biologists have shown experimentally that this is possible because ants communicate 

with each other using a chemical substance called pheromone that ants can sense and deposit. This kind 

of communication is a form of indirect communication mediated by modifications of the environment. 

In some ant species, a foraging ant deposits an amount of pheromone on the ground when travelling 

back to the nest from a food source. This increase in pheromone level will increase the probability that 

other ants will follow the same path, which will eventually lead them to the food. This probability 

increase, together with a continuous evaporation of deposited pheromones, will aid the ants in finding 

the shortest path between the nest and a food source. In this simulation study, an algorithm based on 

this ant behavior is created. The resulting Ant Colony Optimization (ACO) model is used to solve shortest 

path problems on several road networks. 

The simulation model provided in this study uses artificial ants which will travel on undirected graphs, 

such as the map in Figure 1. The artificial ants will construct loop-free, feasible solution from the start 

node or nest (N1, in green) to the food source or destination node (N13, in red). The user can provide 

the model with any problem (map) they can think of. 

 

Figure 1 - Road network used in the ACO model 

The behavior of the artificial ants is validated against real ant behavior and the model performance is 

observed using several test maps. The results of these tests are that the artificial ant behavior is valid 

and when the parameters such as the evaporation rate are set to the right value, the artificial ants are 

able to solve even more complex problems than real ants would be able to handle. The tuning of the 

parameters is map dependent, but in general increasing the colony size and enabling a modest 

pheromone evaporation rate will allow the ants to quickly converge to an optimal solution. 
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Preface and assignment description 

The behavior of colonial animals like ants and bees has always attracted the attention of human beings. 

The type of collective behavior exhibited by animals of the same size which aggregate together is called 

swarm behavior or swarming. The intelligence that seems to exist in these swarms has inspired a 

considerable amount of researchers – mainly biologists – to study the behavior of these animals. These 

studies also led to a research field called ‘Swarm Intelligence’ introduced in 1989 (Beni, G. 1989). 

Part of the Swam Intelligence field is Ant Colony Optimization (ACO), in which the behavior of ants – 

searching for a path between their colony and a food source – is used to construct algorithms which can 

solve problems that can be reduced to finding paths in a graph.  Initially proposed by Marco Dorigo in 

1992 in his PhD thesis (Dorigo, M. 1992), the first algorithm was aiming to search for an optimal path in 

a graph.  

One way of using ACO is making ants search for the shortest path on a graph between A (nest) and B 

(food) and that is what this simulation study is about: Solving the Shortest Path problem using Ant 

Colony Optimization. The assignment description is as follows: 

Shortest-path problem solving model using ‘Ant Colony Optimization’  

Ant colonies use indirect communication based on pheromone deposits to determine the shortest path 

between the nest and a food source. This method, called Ant Colony Optimization (ACO) is currently 

being used in several traffic models. Simulation is an ideally suitable tool to study this method. 

This computer assignment consists of studying the ACO theory and developing and building a simulation 

model which can determine the shortest path between two points  in any given (road) network, using 

ACO. In other words, artificial ants should solve the shortest-path problem on any undirected graph. 

 

The value of several necessary parameters such as the pheromone evaporation rate needs to be 

determined using ACO theory and/or model and parameter tuning. A 2D animation depicting the course 

of the process in time is an additional requirement. 
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1. Introduction 

One of the most surprising behavioral patterns that ants exercise is the ability to find the shortest path 

to a food source. Biologists have shown experimentally that this is possible because ants communicate 

with each other using a chemical substance called pheromone that ants can sense and deposit. This kind 

of communication is a form of indirect communication mediated by modifications of the environment. 

In some ant species, a foraging ant deposits an amount of pheromone on the ground when travelling 

back to the nest from a food source. This increase in pheromone level will increase the probability that 

other ants will follow the same path, which will eventually lead them to the food. This probability 

increase, together with a continuous evaporation of deposited pheromones, will aid the ants in finding 

the shortest path between the nest and a food source. 

Consider an ant in Figure 2 that has started exploring its environment from the nest (N) and has 

travelled in direction ‘a’ until he discovered a food source (F). Now that he has discovered a food source, 

he starts to return to the nest (direction ‘b’) leaving a trail of pheromone as he goes. This pheromone 

trail will be picked up by other ants and eventually they will also discover the food source. The map 

provided does offer the ants a number of crossings where they ‘choose’ to go either left or right. 

Because of the evaporation of pheromones over time, the shortest path will eventually reach a 

distinctive higher amount of pheromone and will be ‘chosen’ by most of the ants. 

 

Figure 2 - Real ant behavior 
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2. The ACO model 

The goal is to construct a simulation model using artificial ants which are able to solve shortest-path 

problems on any (road) network provided. This network will be represented by a static, connected graph 

�	 � 	 ��, �� consisting of a set of 		 � 	 |�| nodes and � is a set of undirected arcs (roads) connecting 

them, see Figure 3. The two points between which the shortest path is to be found are called start and 

end node, or in analogous to the real ants: nest and food source. 

 

Figure 3 - Undirected graph (G) 

Unfortunately, if one would try to solve the shortest-path problem on the graph � using artificial ants 

whose behavior is only a straightforward extension of real ant behavior, problems will arise. Real ants 

use both a forward and a backward pheromone trail updating mechanism and as a consequence, 

artificial ants may get trapped in a loop while generating a solution. Because of the pheromone updating 

mechanism, such a loop will become more and more attractive and most ants will start to follow it. This 

means that even if an ant escapes such a loop, the overall pheromone distributions (and thus, the 

probability distribution) will become such that the short paths are no longer favored and the whole 

mechanism doesn’t work anymore. Because this problem arises due to the forward pheromone 

updating, the simplest solution seems to remove this forward updating and only rely on backward 

updating. As it turns out, the forward updating is a necessary behavior to obtain convergence of the ant 

colony to the shortest branch. If an ACO model is considered in which ants deposit pheromone only 

during either the forward or the backward trip, then the result is that the ant colony is unable to choose 

the shortest branch. Observations of real ant colonies have confirmed that ants that deposit pheromone 

only when returning to the nest are unable to find the shortest path between their nest and the food 

source (Deneubourg, 2002). 

Therefore, the capabilities of the artificial ants will need to be extended in such a way that, while they 

retain the most important characteristics of real ants, they are able to solve shortest-path problems on 

generic graphs. The solution to this problem is (in this case) to give the ants a limited form of memory in 

which they can store the path they have taken so far (from the start to where they are at a current 

moment) as well as the number of steps they have taken to get there. Using this memory, the ants can 

exercise some useful behavior that allows them to efficiently build feasible solutions to the shortest-

path problem. This behavior consists of: (§2.1) probabilistic forward solution construction based on 
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pheromone levels; (§2.2) backward path tracking and pheromone updating and; (§2.3) evaluating the 

solution quality based on the number of steps taken and using this solution quality to determine the 

amount of pheromone that should be deposited while backtracking their path. 

 

Figure 4 - Road network for the ACO model 

2.1 Probabilistic forward solution creation 

The ants in the ACO model devised for this simulation study effectively have two ‘working modes’: 

forward and backward mode. In forward mode, the ants travel the network from the start node (green 

in Figure 4) looking for the end node (red in Figure 4) using the current pheromone levels. An ant builds 

a solution to the shortest-path problem by applying a step-by-step decision policy embedded in the ant 

process. At each decision point – a node which is connected to more than one other node – the ant will 

read (sense) the local information stored on the outgoing roads and use this information in a stochastic 

way to ‘choose’ his next destination.  This will be done by taking a sample from a destination 

distribution. This destination distribution is a probability which consists of all possible roads the ant can 

choose from; these are the roads leading to the connected nodes on the graph. The relative probability 

of each road is based on its pheromone level compared to the total amount of pheromones in the 

current destination distribution at that time. At the beginning of the search process, a constant amount 

of pheromone (e.g. ��� � 1, ∀��, �� ∈ �� is assigned to all the arcs. When located at node � ant � uses 

the pheromone trails ���  to compute the probability of choosing � as the next node: 

���� �	� ���

∑ ����∈�
�
�

,			if	� ∈ 
�
�;	

0,																if	� ∉ 
�
�;	  

Equation 1  

where ��
� is the neighborhood of ant � when in node �. In this ACO model the neighborhood of a node � 

contains all the nodes directly connected to node � in the graph �	 � 	 ��, ��, except for the predecessor 

of node � (the last node the ant visited before moving to �). In this way, the ants avoid returning to the 

same node they visited immediately before node �. Only in the cases when either ��
� is empty (which 

corresponds to a dead end) or when the ant is on node 1 (the start node), node �’s predecessor is 
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included into ��
�. Ants will hop from node to node using this decision policy until they come across the 

end node. Due to differences among the ants’ paths, the time step at which the ants reach the 

destination may vary from other ants. Ants traveling on shorter paths will reach their destination earlier. 

Note that the probability ���
�  (Equation 1) is influenced by the pheromone trails deposited on the graph 

by the ants.  Ants that are moving forward (constructing solutions) do not deposit any pheromone while 

moving. This, together with carefully determined backward moving, helps avoiding the formation of self-

reinforcing loops. In summary, in forward mode an ant is constructing a feasible solution to the shortest-

path problem.  

2.2 Backward path tracking and pheromone updates 

The artificial ant stores the nodes visited and the number of steps taken in its memory. This memory 

allows an ant to retrace the path it has followed while searching for the end node. On top of this, it 

enables the artificial ants to improve their performance by using a loop elimination mechanism. When 

the end node is found, the ant will enter backward mode. In backward mode, the ant removes any loops 

from the path it memorized (§4.4) and starts retracing his path while depositing pheromone on all arcs 

(roads) it traverses. While traveling this loop-free path, ant � will deposit an amount ∆�� of pheromone 

which changes the pheromone level ���  of the roads ��, �� the ant has traveled as follows: 

��� 	← 	 ��� + 	∆�� 

Equation 2 

These changes influence the environment in such a way that the probability that other ants will choose 

the same roads will increase. In the ACO model, the artificial ants will be all be objects of the same Ant 

class and follow the same ant process, influencing the environment as they deposit pheromones on the 

map.  

2.3 Pheromone deposits based on solution quality 

Because the ants memorize both the nodes they visit as well as the amount of steps taken (the cost of 

the arcs they traversed) they can evaluate the cost of the solution they constructed. Using this cost, ants 

can modulate the amount of pheromone (∆��)	they deposit while in backward mode. Making the 

pheromone drop amount dependent of the solution quality can help the ants in directing the colony 

more strongly toward better solutions. In the ACO model, this feature is implemented by making the 

pheromone drop amount a non-increasing function of the path length (the longer the path, the lower 

the amount of pheromone that is deposited). 
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2.4 Pheromone trail evaporation 

In real ant colonies, pheromone intensity decreases over time because of evaporation. Even though in 

the experiments run by Deneubourg et al (1990) pheromone evaporation did not play any noticeable 

role because of the very slow evaporation rate, it can be very useful for artificial ants in ACO models to 

improve performance. Pheromone evaporation reduces the influence of the pheromones deposited in 

the early stages of a search, when ants do not yet have a clue which path to follow and might build 

solutions of very poor quality. So pheromone evaporation can be seen as an exploration mechanism that 

avoids quick convergence of the ants to suboptimal solutions. A decrease in overall pheromone intensity 

will promote the exploration of different paths during the whole search process. Even though the 

influence of evaporation on real ants’ path finding seems to be unimportant, it could actually be very 

important for artificial ants due to the fact that the problems tackled with ACO models are much more 

complex than those that any real ant species can solve. A mechanism like evaporation allows a 

continuous improvement of the available solutions.  

In this ACO model, pheromone evaporation is simulated by an evaporation rate that can be set to a 

constant value. After a set period of time, pheromone trails are all reduced (evaporated) by applying the 

following equation to all arcs: 

��� 	← �1 − ����� , ∀��, �� ∈ �, 

Equation 3 

Where �	 ∈ 	 (0, 1] is the constant evaporation parameter that can be configured in the ACO model.  

The whole ACO model described in the previous paragraph will be implemented in Delphi/Tomas. 

Before this is done, the model will first be described in pseudo code in the next chapter. This chapter is 

called the Program Descriptive Model (PDL), which will be translated into Delphi code.  
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3. PDL model 

This chapter describes the entire simulation model in program descriptive language, or pseudo code. All 

of the object classes and their properties will be defined and processes will be described. This PDL model 

is implemented in Delphi/Tomas for this simulation study. For more details and the final 

implementation, refer to the ACO program Delphi/Tomas Source code. 

The following classes and their attributes, functions and procedures will be defined:  

World, Node, Road, Node, Score, Ant, AntGenerator and UpdateClass. 

World {Global Settings} 
- NumberOfAnts    nAnt  ∈ [1, ∞] 
- AntPheromoneCapacity   α    ∈ (0, ∞) 
- PheromoneEvapRate   β    ∈ (0, 1]   
- AntSpeed     vAnt    [m/s] 
- UpdateRate   pheromo`ne update interval [ms] 
- DisSeeder   Seed offset variable 
- KeepSearching  Boolean: False when shortest path is found 
- AllRoadsQ   TomasQ: All Roads 
- AllNodesQ   TomasQ: All Nodes 
- AllAntsQ   TomasQ: All Ants 
- AntsinSystem   Current nr. of ants in system (for generator) 
- TotalRoadLength  Length of all roads on the map (for pheromones) 
- ScoreList   TList of all scores (length of ant solutions) 

 
Node 

- MyID    Unique number: arbitrary 
- MyType   Node type: 1, 2 or 3 

//1=start 2=normal 3=end 

 
- X    x-coordinate 
- Y    y-coordinate 
- RoadQ    TomasQ: All connected Roads 

 
Road 

- MyID     Unique number: arbitrary 
- N1    String, Name of First Connected Node 
- N2    String, Name of Second Connected Node 
- MyN1    Node, N1 
- MyN2    Node, N2 
- PheromoneLevel  Current Pheremone level 
- Length    [m] 

 
Score 

- Amount   Double 
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Initiation (‘Open file’) 

- Input = Inputfile.txt 
 
---------- Procedure 

InputFile = TomasFile.Create(SelectInputFile.filename) 
 

//Create World 

        Map=World.Create('Map') 
        Map.NumberOfAnts = AntsForm.NrAntsTrack.Position 
        AntsForm.NrAntsLabel.Caption = 'Nr Ants ' +      

  IntToStr(AntsForm.NrAntsTrack.Position) 
        Map.AntsInSystem= 0 
        Map.EvapRate = ( AntsForm.EvapTrack.Position / 100 ) 
        AntsForm.EvapRateLbl.Caption = 'EvapRate ' +  

  IntToStr(AntsForm.EvapTrack.Position) 
        Map.AntSpeed = 0.6 
        Map.UpdateRate = 500 
        Map.DistSeeder = 1 
        Map.KeepSearching = true 

Map.AntPheromoneCapacity:=(((Map.TotalRoadLength)/1000)); 
Map.AllNodesQ=TomasQueue.Create('AllNodesQ') 

        Map.AllRoadsQ=TomasQueue.Create('AllRoadsQ') 
        Map.AllAntsQ=TomasQueue.Create('AllAntsQ') 
        Map.TotalRoadLength=0 
        Map.ScoreList = TList<Score>.Create 
 

 NrOfNodes=InputFile.GetInteger //first number of input file = nr of Nodes 
 For i=1 To NrOfNodes Do 
 
          NewNodeName=InputFile.GetString 
          NewNode=Node.Create(NewNodeName) 
          NewNode.MyID=NewNodeName 
          NewNode.MyType=InputFile.GetInteger 
          NewNode.X=InputFile.GetInteger 
          NewNode.Y=InputFile.GetInteger 
 
          Map.AllNodesQ.AddToTail(NewNode) 
          NewNode.RoadQ=TomasQueue.Create(NewNode.MyID + '_RoadQ') 
 
            //draw Nodes in OutputBox 
            case NewNode.MyType of 
              1:                            //startnode = green 
                 OutputBox.Canvas.Brush.Color=clGreen 
              2:                            //normal node = yellow 
                 OutputBox.Canvas.Brush.Color=clYellow 
              3:                            //endnode = red 
                 OutputBox.Canvas.Brush.Color=clRed 
              else                          //type <> 1,2,3 = purple = error! 
                  OutputBox.Canvas.Brush.Color=clPurple 
    End case 
 
          OutputBox.Canvas.Pen.Color=clBlack 
          OutputBox.Canvas.Pen.Width=2 
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OutputBox.Canvas.Ellipse(Round(NewNode.X),Round(NewNode.Y),Round(NewNode.
X)+20,Round(NewNode.Y)+20) 

          OutputBox.Canvas.Brush.Color=clWhite 
          OutputBox.Canvas.TextOut(NewNode.X+30, NewNode.Y+5, NewNode.MyID) 
           
 //create Roads 

         NrOfRoads=InputFile.GetInteger //second number of input file = nr of Roads 
 
         For j=1 To NrOfRoads Do 
 
          NewRoadName=InputFile.GetString 
          NewRoad=Road.Create(NewRoadName) 
          NewRoad.MyID=NewRoadName 
          NewRoad.PheremoneLevel= 1 
 
          NewRoad.N1=InputFile.GetString 
          NewRoad.N2=InputFile.GetString 
 
          NewRoad.MyN1=Map.AllNodesQ.ElementWithName(NewRoad.N1) 
          NewRoad.MyN2=Map.AllNodesQ.ElementWithName(NewRoad.N2) 
 
          Map.AllRoadsQ.AddToTail(NewRoad) 
          NewRoad.MyN1.RoadQ.AddToTail(NewRoad) 
          NewRoad.MyN2.RoadQ.AddToTail(NewRoad) 
 
          //Calculate Road Length 

          NewRoad.Length=round(sqrt(Power(NewRoad.MyN1.X-  
  NewRoad.MyN2.X,2)+Power(NewRoad.MyN1.Y-NewRoad.MyN2.Y,2))) 
          Map.TotalRoadLength=(Map.TotalRoadLength + NewRoad.Length) 
           
          //draw Road 
          OutputBox.Canvas.Pen.Color=clBlue 
          OutputBox.Canvas.Pen.Width=2 
 
          OutputBox.Canvas.MoveTo((NewRoad.MyN1.X+10), (NewRoad.MyN1.Y+10)) 
          OutputBox.Canvas.LineTo((NewRoad.MyN2.X+10), (NewRoad.MyN2.Y+10)) 

 
    AntGen = AntGenerator.Create('AntGenerator') 
    AntGen.Start(TNow) 
 
    Updater:=UpdateClass.Create('Updater') 
    Updater.Start(TNow) 
    InputFile.Free 
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AntGenerator 

 
---- Procedure 

 //Generate all ants at t=0 

 
Repeat while Map.AllAntsQ.Length < NumberOfAnts 
  New Ant (‘Ant’) 
   Ant.ID = (TotalAntsQ.Length +1) 
   Ant.PheromoneCapacity = AntPheromoneCapacity 
   Ant.Speed = AntSpeed 
   Ant.myNode = Node ‘N1’  [NodeID = 1 = start node] 
   Ant.VisitedNodesQ = Q = empty 
   Ant.NextNode = Node = empty 
   Ant.DestinationQ = Q = empty 
   Ant.DestinationDistribution = Distribution = empty 
   Ant.myRoad = RoadID = empty 
   Ant.StepsTaken = double = 0 
   Ant.EnterQue(Map.AllAntsQ) 

   Ant.Start(TNow) 
 
 End Repeat 
StopAndLeave 
 

Updater 
- AllPheromones   [numeric value] 
-  
---- Process 
 
Repeat 
Hold (Map.Updaterate) 
 
AllPheromones = 0 
 
//Update pheromone values 

 For All Roads in AllRoads.Q 
  Road[i].PheromoneLevel =  
   Road[i].PheromoneLevel * Map.EvapRate 

AllPheromones  =  
AllPheromones + Road[i].PheromoneLevel 

  Next Road 
 End For 

 
 
//Draw roads according to relative pheromone level 

For All Roads in AllRoads.Q 
  Draw line between Road[i].N1.X,Y & Road[i].N2.X,Y  
   With thickness = 
   (Road[i].PheromoneLevel / AllPheremones) * 50 pixels 
  Next Road 
 End For 
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Ant 

- myID    String, Unique name 
- PheromoneCapacity = α  (Read from World data) 
- Speed = vAnt   (Read from World data) 
- MyNode    Node, Ant’s current location 
- MyRoad    Road, Current road 
- StepsTaken   Steps taken on forward cycle (=solution cost) 
- StepsBack   Steps taken on backward cycle (=score) 
- MyScore    Score, StepsBack when at Start Node 
- Stepnumber   Current iteration number since Start Node 
- VisitedList   TList of Node: Nodes Already visited (forward cycle) 
- BackW    Array of Node: Nodes Already visited (backward cycle) 
- NextRoad    Road, Next Road to travel on 
- NextNode    Node, Next Node (destination) 
- DestinationQ   TomasQ, all possible destinations (connected Roads) 
- DestinationDistribution  TTableDistribution, Tomas distribution of destinations 
- TotalDestinationLevel  Pheromone level of ALL possible destinations  
- DropAmount   Amount of pheromone to be dropped on a road 
- FoundTarget   Boolean, TRUE if Ant found End Node 
- FoundStart   Boolean, TRUE if Ant returned at Start Node 
- AverageScore   Current average score of all ants, used for sorting 
- DisplayScore   Ant’ score that should be displayed in ScoreList 
- DeletedSomething  Boolean, used for loop removal 

 
--- Function Ant.NodeFromRoad (MyNode:Node; MyRoad:Road): returns Next Node 
 //Assigns NextNode from Road identifier (forward mode) 

 
{If N1 equals the current Node, N2 is the next Node} 

If MyRoad.N1 = MyNode then  
 Next Node = N2 
Else {N1 is the next Node} 

Next Node = N1  
  
--- Function Ant.RoadFromNode (DestinationQ:TomasQ; NextNode:Node): returns Road 
 //Assigns NextRoad when NextNode is known (backward mode) 

//NextNode and MyNode are known, MyNode.RoadQ equals DestinationQ 

//check entire DestinationQ for a match 

 
For I = 0 to DestinationQ.length-1 
 NextR:=DestinationQ.Element(i) 

If NextR.MyN1 = Nextnode then  {NextNode is connected to THIS NextR} 
  Next Road = NextR 
 ElseIf NextR.MyN2 = NextNode then 
  Next Road = NextR 
 {Else: check next Road} 
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--- Procedure: Ant.FillDestinationDistribution (DestinationQ:TomasQ) 
 //Fill the table distribution with probabilities based on pheromone levels 

  

 {calculate total pheromone level) 

For I = 0 to DestinationQ.length-1 
  CurrentRoad = DestinationQ.Element(i) 
  Totallevel = totallevel + CurrentRoad.Pheremonelevel 
  

{add Roads to DestinationDistribution} 

For J = 0 to DestinationQ.length-1 
  CurrentRoad = DestinationQ.Element(j) 
  X = CurrentRoad.MyID 
  F = CurrentRoad.PheremoneLevel / Totallevel 
  DestinationDist.AddValue(X,F) 
 
--- Process: Ant.Process 

 
FoundTarget, FoundStart = False 
StepsTaken, StepNumber = 0 
 
Repeat while KeepSearching is True 
 
//Ant starts in forward mode and will be at the Start Node 

 
VisitedList.Count = Stepnumber+1 
{Add current Node to VistedList} 

VisitedList.Items[Stepnumber] = MyNode 
 DestinationQ = MyNode.RoadQ 
   
//Forward mode: 1 option 

{If there is only one option (road) to take: take it} 

If DestinationQ.Length = 1 then 
MyRoad = DestinationQ.FirstElement  //First element is also the only element 
NextNode = NodeFromRoad (MyNode, MyRoad)  //Returns Next Node 
 
//Forward mode: 2 options (while NOT @ Start Node) 

//If there are two options: Don’t take the previous Road 

//Note: This is NOT valid @ Start Node   

If DestinationQ.Length = 2 AND MyNode.Mytype = 2 then 
  

if DestinationQ.Element(0) = MyRoad then      
//element 1 = current road, next road is element 2 

                            MyRoad:=DestinationQ.Element(1); 
                            NextNode:=NodeFromRoad (MyNode, MyRoad);   
                         else 

//element 2 = current road, next road is element 1 

                            MyRoad:=DestinationQ.Element(0);          
                            NextNode:=NodeFromRoad (MyNode, MyRoad);   

 
  



17 

 

//Forward mode: >2 options (or >1 option @ start) 

Else //There are more than two options: make choice based on pheromone levels 
 
Read optional seed offset --> j 
 

          {grab a seed from TomasSeeds} 
i:=Seed(Map.DistSeeder+j); 
 
//create and fill a new destination distribution 

DestinationDist = TTableDistribution.Create(i, discrete) 
FillDestinationDist(DestinationQ)  
 
//choose destination (sample from destdist) 

NextRoad = (DestinationDist.sample) 
MyRoad = DestinationQ.Elementwithname(floattostr(NextRoad)) 
NextNode = NodeFromRoad (MyNode, MyRoad)  //Returns Next Node 
 

//NextNode and NextRoad have now been defined for all possible scenarios 

//Now the Ant walks to the Next Node 

 
Hold (myRoad.Length / Speed) 
myNode = NextNode 
StepNumber = Stepnumber +1 
 
//We arrived at the Next Node and check if we already found the End Node 

Case MyNode.MyType OF: 
 2: FoundTarget = False //haven’t found the End Node yet 
  

3: FoundTarget = True //Found the End Node! 
     FoundStart = False //Start to ‘look’ for the Start Node again  
 
{If the ant found the target it starts the backward mode} 

{First, it removes any loops from its path} 

 
DeletedSomething = False 
P,R,T = 0 
 
While P < VisitedList.Count-1 do 
 CheckNode = VisitedList.Items[P] 
 For Q = P+1 to VisitedList.Count-1 do 
 If VisitedList.Items[Q] = CheckNode then 
  //a match is found which corresponds to a loop 

  //a range of nodes will be deleted from the VisitedList to remote the loop 

  VisitedList.DeleteRange(P, Q-P) 
  StepNumber = Stepnumber – (Q-P) 
  DeletedSomething = TRUE 
  Break   //exit THIS loop 
 If DeletedSomething = True then 
  //restart the search 

  P = 0, DeletedSomething = False 
 Else //Nothing was deleted (no loop detected) 
  P = P+1 {Check next Node for matches} 
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//The ant now has a loop free path which it will follow back to the Start Node (nest) 

 
While FoundStart = False do 
 
NextNode = VisitedList.Items[(StepNumber-1)] 
DestinationQ = MyNode.RoadQ 
MyRoad = RoadFromNode(DestinationQ, NextNode, MyNode) 
 
Hold((MyRoad.Length) / Speed) 
Stepsback  = (Stepsback+MyRoad.Length) 
DropAmount = Map.AntPheromoneCapacity 
 
//Drop Amount dependent of StepsTaken? 
if DropAmountDependent = TRUE then 
DropAmount = (Map.AntPheromoneCapacity / (StepsTaken)) 
 
MyRoad.PheremoneLevel = MyRoad.PheremoneLevel + DropAmount 
 

            MyNode= NextNode 
            StepNumber=StepNumber-1 
 
              Case MyNode.MyType OF {Type 1 (start), 2 (normal) or 3 (end)} 
                     1: //Ant is @ Start Node (found goal) 

                        FoundStart = True 
                        MyScore= Score.Create(MyId + 'AntScore') 
                        MyScore.Amount= StepsBack 
 
                        Map.ScoreList.Add(MyScore) 
                        Map.ScoreList.Sort(Scores) 
 
                        // Clear ScoreMemo (GUI) 

                        AntsForm.ScoreMemo.Clear 
                        // Display 25 best scores only (truncate scorelist for speed/handling purposes) 

                        if Map.ScoreList.Count < 25 then 
                           MaxScoreNr=Map.ScoreList.Count-1 
                        else 
                           MaxScoreNr=24 {0 to 24 = 25 items} 
 
                        //Reset average top25 score 

                        AverageScore=0 
 
                        // And display the ScoreList in ScoreMemo (GUI) 

                        for s = 0 to MaxScoreNr do 
                         if Antsform.ScoreCheckBox.Checked = TRUE then 
                    AntsForm.ScoreMemo.Lines.Add(floattostr(Map.ScoreList.Items[s].Amount)) 

 
//calculate average top25 score 

                          AverageScore= ( AverageScore + (Map.ScoreList.Items[s].Amount) ) 
                        DisplayScore = Round((AverageScore)) 
                        DisplayScore = Round(Displayscore / (MaxScoreNr+1)) 
                        AntsForm.Label7.Caption= inttostr(DisplayScore) 
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      //Display iteration number (GUI) 
                        if Antsform.IterationsCheckbox.Checked = True then 

Antsform.IterationsLabel.Caption=Inttostr(round(Map.ScoreList.Count/
Map.NumberOfAnts)) 

 
                        //end condition 1: 
                        //compare avg top25 score with total score after min. iterations per ant 

   if Map.ScoreList.Count > (AntsForm.MinRunsTrack.Position *  
      Map.NumberOfAnts) then 

                            //If average score equals best score, the ants are considered converged  
                            if DisplayScore = Round(Map.ScoreList.Items[0].Amount) then 
                              Map.KeepSearching = False {End the simulation} 
                              Antsform.ConvergedPanel.Color = clGreen 
                              Antsform.ConvergedPanel.Caption = 'yes' 
 

//end condition 2:  

   //stop after max. iterations per ant 

   if Map.ScoreList.Count > (Antsform.MaxRunsTrack.Position *  
      Map.NumberOfAnts) then 

                         
                          Map.KeepSearching = False 
                          Antsform.ConvergedPanel.Color = clGreen 
                          Antsform.ConvergedPanel.Caption = 'yes' 
 
                        //Reset steps/scores and continue 
                        StepsTaken=0 
                        StepsBack=0 
                        StepNumber=0 
                        continue 
                         
                    2: //Ant is @ a normal node: continue to follow path 

                          FoundStart = False 
                           
 
                    3:  //ant is back @ end node (shouldn’t happen!) 
                          FoundStart = False 
                          showmessage(‘I failed… sorry!’) 
 
      End Case 
  
//Stop if it’s time (global condition) 

If Map.KeepSearching = False then 

 InterruptSimulation //Interrupt the simulation 

End of Ant.Process;  
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4. Implementation and issues 

For this simulation study, the PDL model is implemented in Delphi/Tomas. During implementation of the 

PDL, some issues have occurred which have been ironed out in the progress and have been documented 

below. Some issues have resulted in a change, update or refinement of the PDL model, these changes 

have already been incorporated in the PDL model of Chapter three, such that this Chapter provides a 

complete and correct PDL model. 

4.1 Distributions & seeds 

When using probability distributions such as the TomasDistributions, one needs a (random) seed to 

initiate the process of taking samples from such a distribution. Issues here are that a unique seed is 

required to generate unique and random samples. On the other hand, using the same unique seed 

values, runs become reproducible which is preferable for experimental and demonstrational purposes. 

The approach in this particular simulation study is to use a user-controlled seed offset value and a 

Delphi unit called ‘ACO Seeds’ containing a large number of seed values. This seed offset value 

determines both which seed value is retrieved from the ACO seeds unit and in which way the following 

seed values will be retrieved. The result is that while the model can produce several different unique 

and valid runs, these runs are also reproducible when the parameters are set to the exact same values. 

This allows for unique experiments and reproducible runs for demonstrational purposes. 

The second issue that occurred also seemed to do with the TomasDistributions, but turned out to be an 

error in the Ant process where ants were not allowed to travel on the branch they just had followed to 

arrive at the decision point. This behaviour caused problems in networks with two or more branches 

originating from the start node. When an ant returned at the start node traveling on the shortest path, it 

wasn’t allowed back in the network using its previous branch, which actually would have been the ‘best 

choice’. This error presented itself as weird ant behaviour and seemed to be caused by invalid samples 

from the DestinationDistribution. When the filling and sampling from the TomasDistribution was tested 

step-by-step and proved to be valid, attention was redirected to the Ant process itself. When this 

process was thoroughly reviewed, the decision process was found to be faulty since it would not allow 

ants to re-enter the network on the branch they travelled to reach the start node. This decision policy 

has been revised and is now in the form that can be found in the PDL model. This revised decision policy 

does allow ants to travel on the branch they have taken to reach the decision point, if this is necessary. 
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4.2 The VisitedNodesQ and backtracking the route 

When ants visited a particular node more than once on their route from start to end, something weird 

happened when the ants started tracking back their route to the start. Say an ant visited the following 

sequence of nodes: 1-3-5-4-5-7, where 1 is the start node and 7 is the end node. When this ant started 

tracking back its path, it would repeatedly select the previous node from its VisitedNodesQ and visited 

all the nodes in reversed order. So we would expect the route from the end node to the start node to 

be: 7-5-4-5-3-1, the reversed order of the forward sequence. But in fact, this ant took the following 

sequence on its way back to the start: 7-5-5-4-3-1. The ant visited node 5 two times in a row, instead of 

visiting node 4 in between. This issue finally turned out to be a kind of sorting behavior of TomasQueues 

which cannot indifferently handle objects with the same name without sorting them (and augmenting a 

sub-identifier: Node5.1, Node 5.2, etc.). This problem has been mitigated by using an Array to store the 

visited nodes (VisitedNodesArray) instead of a TomasQueue (VisitedNodesQueue) which was originally 

planned. The ant process itself hasn’t undergone any procedural changes to correct this behavior and 

the ants will now backtrack their path in the same way as in forward mode. 

4.3 Scorekeeping and end conditions 

Another issue was that of scorekeeping and end conditions. From an experimental point of view the 

model should allow the ants’ performance to be measured. This performance will be registered using 

Scores which consists of the number of steps an ant has taken to reach the goal. Besides scorekeeping, 

the simulation should also be able to stop after some end conditions are met. These end condition 

include the following: minimal and maximal number of iterations per ant, average score and the top 25 

scores. 

The scores of the ants are measured in the number of steps they take on their way back from the food 

to the nest (this equals the cost of the solution). This means that the lowest score represents the best 

performance and best found solution so far. These scores are all stored in a Delphi element called 

Generic TList. This TList element allows scores to be stored and easily ranked from low to high. Using the 

best 25 scores in the List, the Average Score value is computed.  

Using the Score values and the recorded number of iterations per ant, the end conditions are 

implemented as follows. 1: When the condition of maximum number of iterations per ant is met, the 

simulation will be interrupted. 2: When the condition of minimum iterations per ant is met and the 

value of the Average Score equals the value of the nr.1 Score, the model is considered to be converged 

to a solution and the simulation will be interrupted. 
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4.4 Self-Reinforcing Loops and how to eliminate them 

The last problem encountered in a later stage was that of self-reinforcing loops. In (large) networks 

where it is possible for an ant to create suboptimal paths by making loops, these loops would receive a 

lot of pheromones and attracted a lot of ants. This finally caused ants to get infinitely stuck in these 

loops because they were self-reinforcing, as expected and described in Chapter 2.    

The loop elimination is implemented by iteratively scanning the node identifying numbers (Node ID’s) 

position by position, starting from the Nest node. For the node at the �-th position, the path is scanned 

from the end node until the first occurrence of that node is encountered at position � (it always holds 

that � ≤ � because the scanning process stops at position � at the latest). When � > �, the subpath from 

position � + 1to position � corresponds to a loop and can be removed from the path. This loop 

elimination procedure removes loops in the same order as they are created, and doesn’t necessarily 

remove the longest loops but does provide the ants a loop-free path. This loop elimination process is 

depicted in Figure 5 and its process can also be found in the Ant Process. 

 

    

 

  1 – 3 – 4 – 5 – 3 – 2 – 8 – 5 – 6 – 9  

 

    

 

  1 – 3 – 4 – 5 – 3 – 2 – 8 – 5 – 6 – 9  
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Figure 5 - Loop elimination process 



23 

 

5. Model validation 

5.1 The double bridge experiment 

To validate the simulation model and the behavior of the ants, the model was run on several networks 

(representing road networks). The first set of maps is called the double bridge experiment, see Figure 6. 

In this experiment, ants start on the green start node (N1) and will try to find the shortest path to the 

red end node (N4).  

  

Figure 6 - Double bridge experiment, equal length (a) and different length (b) networks 

On the first map (left side) the upper and lower routes are of the same length and the resulting path 

used by the ants is a trivial choice. The expected result after a number of experiments is that the ants 

use one branch or the other approximately the same number of trials. 

A comparable experiment has been conducted with real ants (Iridomytmex Humulis) by Goss et al. 

(1989). It was already known that the foraging behavior of ants is based on indirect communication 

mediated by pheromones. The pheromone trail-laying and -following behavior of some ant species has 

been investigated in controlled experiments by several researchers. They ran various experiments 

varying the ratio � � ��/�� between the lengths of the two branches of the double bridge, where �� is the 

length of the longer branch and �� is the length of the shorter one. 

In the first experiment the bridge had two branches of equal length (r=1). At the start, ants were 

introduced in the system and were allowed to freely move between the nest and the food source and 

the percentage of ants that chose one or the other of the two branches were observed over time. The 

outcome was that, although some random choices occurred in the initial phase, eventually all ants used 

the same branch. This result can be explained as follows. When a trial starts there are no pheromones in 

the system. Hence, the ants do not (yet) have a preference and they will select any of the two branches 

with the same probability. Yet, because of random fluctuations, a few more ants will select one branch 

over the other. Because ants deposit pheromone while walking, a larger number of ants on a branch 

(a) 

(b) 
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results in a higher pheromone level. This higher pheromone level in turn stimulates more ants to choose 

that branch again, and so on until finally the ants converge to one single path.  

 

 

 

 

 

 

 

Figure 7 - Results of the double bridge experiment using real I. Humilis ants. (a) Results for the case with equal branches 

(r=1). (b) Results for the case where one branch is twice as long as the other (r=2). 

In the second experiment, the length ratio between the two branches was set to r=2, so that the long 

branch was twice as long as the short one (see Figure 6 b). Ants are released on the map as in the first 

experiment, and they are allowed to explore the environment. At the decision point, the two branches 

appear to be identical to the ants so they choose randomly. Therefore it is expected that half of the ants 

will travel on the short branch and the other half on the long one, although stochastic oscillations may 

occasionally favor one branch over the other. Because one branch is shorter than the other, the ants 

traveling on the short branch are the first to find the food and return to the nest. But then, when they 

again reach the decision point, the higher level of pheromone on the short branch will bias their decision 

in its favor. Therefore, pheromone starts to accumulate faster on the short branch, which will eventually 

be used by all the ants. 

An interesting case was to see what happened when the ant colony was offered a new shorter 

connection from nest to food, when they already converged to one branch. This case was studied in an 

additional experiment in which initially only the long branch was offered to the colony and after 30 

minutes, the short branch was added. In this case, the short branch was only selected sporadically and 

the colony was effectively ‘trapped’ on the long branch. This can be explained by the high pheromone 

concentration of the long branch and the low pheromone evaporation rate. This also indicates that the 

ant’s foraging method is susceptible for getting trapped in loops or on longer routes once they have 

been travelled  by a large number of ants and thus have received a high pheromone concentration. So in 

fact, most of the ants keep choosing the long branch because of its high pheromone concentration and 

this behavior keeps reinforcing the use of the long branch. 

To test the validity of the ACO model that was developed for this simulation study, the artificial ant 

behavior will be compared with the actual ant behavior that was determined using the experiments 

described above. 
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Twenty runs with 10 ants and an evaporation rate of 0.9 were run on both maps and the results were 

recorded. Each run received a new, unique seed number (seed offset 0-19) to ensure unique, 

reproducible stochastic behavior. 

 

 

 

 

 

 

Figure 8 - Results of the even bridge experiment with ACO. (a) Constant pheromone drop amount ∆�� and  

(b) pheromone drop amount ∆�� dependent of solution quality.  

The results of the even bridge experiment (Figure 8) show that the artificial ants seem to behave the 

same as the real ants did in the experiments of Goss et al. These results are reproducible with the ACO 

model provided. The runs were done both with the pheromone drop amount independent of the 

number of steps taken (a) and dependent of the steps taken (b). This shows that the option “Drop 

amount depends on steps taken” doesn’t seem to invalidate the ant behavior. 

While the even bridge experiment shows the expected results, the ACO performance at the same 

settings on the uneven bridge experiment were different, see Figure 9. 

 

Figure 9 - Results of the uneven bridge experiment with ACO. (a) Constant pheromone drop amount ∆�� and  

(b) pheromone drop amount ∆�� dependent of solution quality. 

These results show that when the drop amount is independent of the amount of steps taken (a), the 

current model parameters (10 ants, pheromone evaporation rate of 0.9) are inadequate to converge to 

the shortest path in all or at least most of the trials. On the other hand, when the drop amount is made 

dependent of the steps taken (b) the results are very clear: all trials converge to the shortest path. These 

results call for more experiments on parameter tuning, see the next chapter. 
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6. Parameter tuning 

When running the ACO model with any network, some model parameters are to be set before starting 

the simulation. These parameters are: the number of ants, pheromone evaporation rate, setting the 

pheromone drop amount ∆�� (in)dependent of the path length, allowing ants to remove loops from 

their path and setting the minimum and maximum number of iterations per ant. The parameter ‘seed 

offset’ allows the model to create unique and reproducible runs. 

The first two interesting parameters are the number of ants and making the pheromone drop amount 

dependent of the path length.  In the double bridge experiment (chapter 5) it was established that the 

artificial ant behavior is not invalidated by basing the pheromone update function on solution quality 

(path length). This experiment also hinted that the artificial ants might actually rely on this solution 

quality based pheromone updating, since ten ants weren’t able to choose the shortest branch in more 

than 50% of the runs. This pheromone deposit based on solution quality is also present in real ant 

species, such as the Lasius Niger. It was observed by Beckers et al. (1993) that ants of this species 

returning to the nest from rich food sources, tend to drop more pheromone than ants returning from 

poorer food sources. 

6.1 Pheromone deposits based on solution quality: double bridge experiment 

The parameter ‘Drop Amount dependent of path length’ will influence the choice of ∆��, the amount of 

pheromone an ant deposits on an arc it traverses while in backward mode. When this is left unchecked, 

∆�� has the same constant value for all ants. In this case, only the ‘differential path length’ mechanism 

will work in favor of the detection of short paths: ants that have constructed a shorter path can deposit 

pheromones earlier than ants traveling on a longer path. In addition to this mechanism, ants may also 

deposit an amount of pheromone which is a function of the path length – the shorter the path, the 

higher the amount of pheromone deposited. So, when checked, the ants will divide their pheromone 

capacity by the number of steps taken on the way from start to end (i.e., ∆�� = 1	/	��).  The influence 

of this parameter will be investigated using the double bridge experiment with the uneven map. 

The results of two experiments will be discussed: 

1. Drop amount disabled: Run ACO with different values for the number of ants, while keeping the 

drop amount ∆�� at a constant value 

2. Drop amount enabled: Same as in 1. above, except that the ants deposit an amount ∆�� which 

is proportional to the solution quality 

All runs were done with 20 different seed offsets creating 20 unique runs for each setting. The outcome 

has been recorded as either ‘short’ or ‘long’ when one of the two branches received at least twice as 

much traffic (pheromones) as the other branch. If this discrepancy wasn’t achieved, the run is recorded 

as having an even outcome (after at least 500 iterations per ant). The results can be found in Table 1 on 

the next page. 
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Table 1 - Percentage of trials in which the ACO model converged to the long path 

Drop amount dependent  

of path length number of ants 1 2 4 8 16 32 

Disabled 
% of traffic on the long branch 

55 30 15 10 10 10 

Enabled 0 0 0 0 0 0 

 

The results of the double bridge experiment in Table 1 show a massive difference between enabling and 

disabling the drop amount being dependent of the path length. There are several observations to be 

made from these results. First of all, it shows that increasing the size of the artificial ant colony will also 

increase the performance of the colony. But this increase will only hold up to a certain point where the 

colony size doesn’t seem to influence the performance anymore, since 8 ants came up with the same 

result as 32 ants. The second observation is that on this particular map (the uneven double bridge), 

enabling the drop amount to be dependent of the path length (i.e., ∆�� = 1	/	��) massively influences 

and increases the model performance. Just one ant managed to converge to the shortest path in 100% 

of the trials. So when drop amount was enabled, increasing the colony size didn’t further influence the 

models’ performance. Another observation made is that for some specific seed offset values, the model 

seemed to lean towards the longer branch, especially when drop amount was disabled. Setting the seed 

offset to 18 for instance resulted in the colony converging to the long path, regardless of the colony size. 

This result indicates that in this case, the initial random fluctuations made the probabilities to shift in 

favor of the longer path and because of the lack of pheromone evaporation in these experiments, the 

ants became ‘stuck’ on this longer path. So, to investigate the influence of the pheromone evaporation 

rate, additional experiments are described in the following section. 
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6.2 Pheromone evaporation: extended double bridge experiment 

In this set of experiments, the influence of pheromone trail evaporation on the convergence behavior of 

the ACO model is studied. To study this influence, the experiments are run using the extended double 

bridge map, see  

Figure 10. 

  
Figure 10 - Extended Double Bridge experiment 

An ant starting at the green start node (N1) can choose between the upper and lower part of the graph. 

The upper branch consists of a single path with length of 894 steps leading directly to the end node. The 

lower part of the graph consists of a set of paths (of which many paths are shorter than 894 steps) and 

the ant has many decisions to make before reaching its destination. Therefore, an ant choosing the 

upper part will always find a path length of 894 steps, while ants choosing the lower part of the graph 

may find paths shorter than that, but also may enter loops or create other inefficient solutions and thus 

generate very long paths. The optimal solution can be generated in two different ways and consists of 

484 steps. This all means that converging to the minimum cost path is not a trivial task for the algorithm. 

The ants have to make a number of ‘correct choices’ and if some of these choices are wrong, the ant 

generates sub-optimal paths which can be a lot longer than when the upper branch is chosen. There is a 

trade-off between converging to the use of an ‘easy’ but sub-optimal path, and searching for the 

optimal path in a search space were suboptimal paths can easily be generated. 

In these experiments the ants deposit an amount of pheromone that is dependent on their path length 

(i.e., ∆�� � 1	/	��) and before depositing this pheromone, the ants remove any loops from their path 

using the procedure describe in §4.4. Note that while this removes the (largest) loops from the ants’ 

path, it still allows sub-optimal solutions to be created. The experiments are all run with 32 ants and 

different settings for the evaporation rate	�	 ∈ �0, 0.01, 0.1�. If � � 0, no pheromone evaporation takes 

place, 0.01 will result in low evaporation and � � 	0.01 will result in a rather large evaporation rate, 

since the evaporation takes place at every update cycle, each 500ms. 

To evaluate the behavior and performance of the algorithm, the average path length found by the ants 

over time will be observed for 200 iterations per ant (6400 iterations in total).  
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The average path length is recorded after each ten iterations and displayed in the chart below, in Figure 

11. 

 

Figure 11 - Average path length vs number of iterations 

The behavior observed is representative for the typical model behavior. If no evaporation is used, the 

best solution for this map isn’t found (or at least not in 6400 iterations). With pheromone evaporation 

enabled, the observed model behavior is significantly different. The average path length decreases a lot 

faster than without evaporation. The lowest average path length was achieved using low evaporation 

(� = 0.1), and at closer examination it turned out that the ants had converged to the shortest possible 

option of 484 steps in both cases when evaporation was enabled. On top of these results, the following 

observations were made in these and additional experiments: 

- Without pheromone updates based on solution quality (Drop Amount disabled) the performance 

was much worse. The most observed behavior was that the ants converged to the suboptimal upper 

branch. 

- The pheromone evaporation rate � can be a critical parameter. In particular when the evaporation 

rate is set too high, the model converged to suboptimal paths. The tuning of this parameter can be 

different for different maps, but in general using evaporation results in better solutions. 
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7. Conclusion and Recommendations 

Considering the assignment description ‘This computer assignment consists of studying the ACO theory 

and developing and building a simulation model which can determine the shortest path between two 

points  in any given (road) network, using ACO.’ It can be concluded that these requirements and the 

additional 2D-animation requirement have been met. This report describes the ACO theory and the ACO 

route-finding algorithm that has been developed. The Delphi/Tomas code included in this report on CD 

is the result of the PDL model described in Chapter three. The models’ behavior has been validated 

against real ant behavior and has been found to be valid as described in Chapter five. It can be used to 

find short paths in virtually any network that it is provided with.  

When the model behavior was tested, several observations have been made. First of all, the model 

performance increases when the size of the virtual ant colony is increased. This is an expected result, 

since more ‘agents’ will provide more solutions and thus allow the search space to be checked more 

thoroughly at a higher speed. Other parameters like enabling pheromone evaporation and making the 

pheromone deposits dependent of the solution quality also (greatly) improved the performance in the 

experiments. Unfortunately, there is no general optimal setting for all of these parameters since they 

are map dependent. As the problems presented become more complex, the parameter settings become 

increasingly important to converge to the optimal solution. The experiments conducted in Chapters five 

and six support the following conclusions: 

1. The effect of differential path length, although important, is not enough to allow large 

optimization problems to be solved effectively 

2. Pheromone deposits based on solution quality are important for fast convergence 

3. The larger the ant colony size, the better the convergence behavior of the algorithm, although 

this comes at the cost of longer simulation times 

4. Pheromone evaporation is important, especially when trying to solve more complex problems 

Considering the amount of calculation power available today, running several experiments with 

different parameters for each map is a viable option. While keeping an eye on the average score, the 

best settings for each map could easily be determined. 

Some recommendations for further development the ACO model provided in this study are the 

following. One thing that would be a very useful thing to implement is a map editor in which a user can 

easily generate maps using a graphical user interface. This map editor could be expanded with a feature 

that imports data from external (open) sources, such as traffic congestion data or map data from 

OpenSteetMap. This would allow the ACO model to be used to calculate shortest paths in actual road 

networks. On top of this, the artificial ant intelligence could be improved and there may be room for 

overall code optimizations in the current model implementation. 
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