
Proceedings of the 16th European Simulation Multiconference (ESM 2002).
June 2002. Darmstadt [SCS]. ISBN 90-77039-07-4

PROTOTYPING IN PROCESS ORIENTED
MODELING AND SIMULATION

Jaap A. Ottjes, Hans P.M. Veeke

Sub Faculty of Mechanical Engineering and Marine Technology, Fac. OCP
Delft University of Technology

Mekelweg 2, 2628 CD Delft, the Netherlands
E-mail: J.A.Ottjes@wbmt.tudelft.nl, H.P.M.Veeke@wbmt.tudelft.nl

KEYWORDS

Discrete simulation, process-oriented, prototyping, logistics,
modeling

ABSTRACT

This paper presents a method that can be used to design
process-oriented discrete simulation models in a fast and
flexible way. To that en an informal object oriented Process
Description Language has been elaborated and an example of
this is shown. In the modeling, the concepts of time
management and concurrency of processes are included. A
particular view on the process-interaction method in which the
active elements are taken to be entities that do the processing,
is discussed and applied. The method is intended for complex
modeling purposes.

INTRODUCTION

When modeling existing or future complex logistic systems,
for example harbors or production plants, it is essential to
ensure that the model gives an adequate representation of the
real system. Before deciding to use simulation usually a lot of
work must be done. A very important component of this
preliminary work is a functional analysis of the system under
study. Such an analysis, leading to a process oriented view on
the system, is very compatible with the process interaction
method (Zeigler et all. 2000), but gap still remains between the
intuitive process model and the final formal model
implementation. Even if software that supports process
modeling and predefined components is used a large
programming effort is still needed to complete complex
models. In practice this leads to the delay of the project, to
model faults and to unnecessary model rigidity. Moreover,
during modeling, and particularly during use of the model,
advancing insight leads to new ideas and questions arise with
respect to model adaptations. These too demand a flexible and
rapid method of model prototyping.

In this paper in order to overcome the difficulties mentioned
above an informal process description language (PDL) is
proposed. The PDL is evolved in modeling practice and has

been used in the development of various models already
(Duinkerken et al, 2001 and Veeke and Ottjes, 2002).
After positioning the process interaction approach in
worldviews on discrete-event simulation, we discuss the
process interaction view by taking an example of intuitive
prototyping. Then a process description language is elaborated
and applied to an example. The method has been introduced
and tested in simulation education and is currently in use in
research projects and consultancy practice.

WORLDVIEWS ON DISCRETE-EVENT SIMULATION

All discrete event simulations contain an executive routine for
the management of the event calendar and simulation clock,
i.e., the sequencing of events and driving of the simulation.
This executive routine calls the next scheduled event,
advances the simulation clock and transfers control to the
appropriate routine. The operation routines depend on the
worldview, and may be based on events, activities, or
processes (Hooper 1986), (Overeinder 2000).

Event scheduling
In event scheduling each type of event has a corresponding
event routine. The executive routine processes a time-ordered
calendar of event notices to select an event for execution.
Event notices consist of a time stamp and a reference to an
event routine. Event execution can schedule new events by
creating an event notice and placing it at the appropriate
position in the calendar. The clock is always updated to the
time of the next event, the one at the top of the calendar.

Activity scanning
In the activity scanning approach a simulation contains a list of
activities, each of which is defined by two events: the start
event and the completion event. Each activity contains test
conditions and actions. The executive routine scans the
activities for satisfied time and test conditions and executes the
actions of the first selectable activity. When execution of an
activity completes, the scan begins again.

Process interaction

The process interaction worldview focuses on the flow of
entities through a model. This strategy views systems as sets of
concurrent, interacting processes. A process class describes the

mailto:J.A.Ottjes@wbmt.tudelft.nl
mailto:H.P.M.Veeke@wbmt.tudelft.nl

Proceedings of the 16th European Simulation Multiconference (ESM 2002).
June 2002. Darmstadt [SCS]. ISBN 90-77039-07-4

behavior of each class of entities during its lifetime. Process
classes can have multiple entries and exits at which a process
interacts with its environment. The executive routine uses a
calendar to keep track of forthcoming tasks. However, apart
from recording activation time and process identity, the
executive routine must also remember the state in which the
process was last suspended (Overeinder 2000). Especially the
object-oriented approach appears to be suitable for process
interaction simulation, (Robert, 1998).

Zeigler (Zeigler et al. 2000) describes process interaction
simulation as a combined event scheduling-activity scanning
procedure. The description of the dynamics of a model element
can be implemented as a unit, rather than being separated into
a number of unconnected events and activity routines.
Therefore the program structure maintains a closer relation to
the model structure and consequently the modeled real system.
The state change of each element during its life cycle is
described as a sequential program: its process. Time
consuming statements in this program cause an interrupt,
which make the element pause until a specified time advance
has elapsed or until a specified condition becomes true. This
mechanism puts special demands on the simulation software.

The process interaction worldview breaks down into two views
corresponding to a different assumption as to what are active
and passive elements in systems to be modeled, (Zeigler et al.
2000). In the prototypical process interaction worldview the
active elements are taken to be entities that do the processing,
e.g. the machines, servers etc. In the second approach the
active elements are the flowing elements, such as customers,
work pieces, packets, etc. The serving elements are called
resources. This “flow oriented” approach is often referred to as
the transaction worldview. Fishman (Fishman, 2001) mentions
that the concept of active processes of flowing elements and
passive resources is applied in most simulation programming
languages that are based on the process interaction approach.
He further argues that having the opportunity to also describe
processes of active permanent elements increases the
flexibility of modeling. The first simulation language that
allowed both approaches in an object oriented way was
"Simula", (Birtwistle and Dahl, 1973).

In this paper we will base ourselves on the process interaction
approach as defined by Zeigler.

THE PROCESS INTERACTION APPROACH

Applying the process-interaction modeling can be summarized
in three steps:

Step 1: decompose the system into relevant classes of
elements, preferably patterned on the real-world elements of
the system. It is obvious that the results of the functional
system analysis may play an important role in choosing the
classes.

Step 2: Identify the attributes of each element class. A class is
characterized by its attributes. An instance of a class will be
called an element. The state of each element is defined by the
state or value of its attributes.

Step 3: distinguish the “living” element classes and provide
their process descriptions. A process governs the dynamic
behavior of each element. An element cannot do two things “at

a time”. If that appears to be the case after the decomposition,
the element class should be split up further until only “single”
processes remain. These single processes are also called “leaf
processors” (Wortmann A.M., 1991) We will use the term
“process” for a single process. Again the results of the
functional analyses may help. In order to illustrate the process
modeling, we will elaborate an example of a simple job shop
in an “ intuitive” way just to

The job shop: An intuitive process model.
If the working of a system is known it is relatively easy to
make an intuitive process model. Applying the 3 building rules
the job shop process model would look like this:

The element classes are machines contained in machine groups
and jobs containing a set of tasks, each with its own execution
time on its machine group. Further we need a generator of
jobs. The active elements are the machines and the job
generator, the latter representing the model environment.

Figure 1. The Job Shop schematically. Jobs consist of a
sequential list of tasks to be executed. The machine groups
contain a number of identical machines. Each group has a job
queue with jobs waiting to be executed.

Process of the job generator:
Wait until next job arrives (this statement consumes system time)
Create a new job with its tasks
Pass the job to the machine group of its first task
Repeat this process

Process of a machine:
Wait for jobs to be processed by your group (this may consume
system time)
Take a job from the jobs that are waiting for this group
Execute the relevant task of that job (this statement consumes
system time)
If the job is ready, put it in the ‘ready buffer’
Else pass the job to its next group

Job

T T T T Task List

DueDate Task

Task

OnGroup

ExecTime

The JOB

The SHOP

A A A

D D

C
C
C
C
C

J
J
J
J
J

J
J
J
J
J

J
J
J
J
J

Machine
Group

Machine

Job

JobQ

B B B

JobGenerator

Shop

JJJJJJ

Proceedings of the 16th European Simulation Multiconference (ESM 2002).
June 2002. Darmstadt [SCS]. ISBN 90-77039-07-4

Repeat this process

Model control:
Create the machine groups with their machines and start the
machine processes
Create the job generator and start its process
Wait the simulation runtime
Present results

In the processes of the active classes “time consuming”
statements appear. These are statements that “consume”
system time.

A time consuming statement expresses a period of action or
waiting of the element. Because time periods used by several
active elements may overlap, a sequencing mechanism is
needed to synchronize the activities and to manage the event
calendar. This mechanism must be supported by the simulation
package that is used. If the process interaction modeling
method is applied, it is desirable that the formalization
(coding) of the model links up with the process approach. Still
there remains a gap between the informal intuitive way of
describing the model as we just showed and a formal
implementation in a process oriented simulation language.
Therefore now a ‘Process Description Language (PDL)’ will
be presented to informally describe systems in a process
oriented manner. The purpose of this is to provide a method to
be used to design and formulate a process oriented model close
to formal implementation in a flexible way. In this stage
irrelevant constraints and formalisms of a specification
language or simulation language are not considered. Nothing
should hinder flexibility and creativity of designers; moreover
the model should still be accessible to a broad audience.

A PROCESS DESCRIPTION LANGUAGE

For a PDL special concepts are needed. The most important
concept however must be in the mind of the modeler: He/she
should think in terms of processes!

Two other important concepts form a basis for the process
modeling and for the PDL: Time management and concurrency
of processes.

Time management
In the real world a process consists of a chain of activities.
Depending of the goals of the modeling some of these
activities take time, for example Execute Task. In the context
of a specific model other activities may be considered to be
timeless, for example switch the light on. In the PDL we will
model the time consuming behavior by introducing a set of
“time consuming” clauses. These clauses appear in the process
descriptions.

Concurrency
When several processes are running parallel in time and
interact, these processes should run synchronized. As it is
assumed that this synchronization is taken care of by the
software to be used, the process modeler has to focus only on
the process and its interactions.

Elements and Sets

A Process is executed by an element, for example the driver of
a car. Moreover there may be a number of elements, for
example drivers, behaving according one specific process
description. Therefore we need the concept of classes of
elements. We define one basic element class that owns all
specific features needed in our process-modeling concept.

We call that class ‘SimElement’

An element of class SimElement owns certain properties and
methods. In terms of object oriented programming it is the
parent class of any model element class we need in the process
model. For simplicity reasons we call the set of properties and
methods of an element class its attributes. Every model
element class inherits all attribute types of SimElement class,
so the process modeler may assume the presence of these
attributes as soon as an element instance is created. In addition,
specific model elements descending from SimElement, for
example a driver class, may have its additional -class specific-
attributes, for example its speed.

The SimElement class needs certain process related attributes:

Class SimElement with the following methods as attributes:
Process related methods
�� Process Describes the process of the element class
�� Start(t) |
�� Interrupt(t) |
�� Resume(t) | t means “at time t”
�� Proceed(t) |
�� Cancel |
�� Finish
�� Create/Arrive/Generate creates the element in the

model as an instance of its class
�� Destroy/Depart/Deliver removes the element from

the model

Further features of SimElement are methods related to ‘sets’ in
which a SimElement may reside

Set related methods of SimElement
�� Enter(Set, Location) Location is in (Head, Tail, After(),

Before(), SortedOn())
�� Leave(Set)
�� IsIn(Set)
�� Successor(Set)
�� Predecessor(Set)
�� SetTime(Set)

Any model element class inherits the attributes and methods of
the SimElement and, in addition to that, it may have its own
class specific attributes and methods. The inherited Process
method has to be provided by the modeler for each active
model class.

Class Set

Proceedings of the 16th European Simulation Multiconference (ESM 2002).
June 2002. Darmstadt [SCS]. ISBN 90-77039-07-4

A second class that is very important in our PDL is the ‘Set’
class. A Set is a collection of model elements and owns its set-
attributes. Sets are extremely useful in the control part of a
model. Control decisions often come down to choosing the
correct element in a Set. For example the assignment of a
transport vehicle to a load could be achieved by combining the
correct vehicle from a Set of vehicles with a specific load from
a Set of loads. Often the main goal of a simulation project is
the development and validation of adequate decision
algorithms.

Sets may or may not be ordered. If a Set is used as a traditional
waiting queue, one is normally interested in statistics of
waiting times in and length of the Set. In that case the Set may
have the name ‘Queue’ as an alias.

Next some important attributes of the Set class are listed.
These attributes are partly complementary to the Set related
attributes of SimElement

Attributes of Class Set
�� Create
�� Destroy
�� Length
�� Add(Element, Location) ;Location is in (Head, Tail,

After(), Before(), SortedOn())
�� Remove(Element)
�� First
�� Last
�� Successor(Element)
�� Predecessor(Element)
�� Contains(Element)
�� IsEmpty
�� IsNotEmpty
�� MeanLength
�� MaxLength
�� MinLength
�� MeanTime
�� MaxTime
�� MinTime

Process description clauses related to system time

“Now” indicates the current time in the system. In a model or
a distributed model there is only one common time.

Time-consuming clauses are indicated with ‘Advance’.

Advance indicates three types of time intervals:

Advance(t): time scheduled interval; process continues after
time t has elapsed
Advance(condition): state scheduled interval; process
proceeds as soon as condition becomes false
Advance: indefinite interval; process has to be resumed from
another process

Example 1: Advance(10). //wait for 10 time units; then
resume process

Example 2: Advance(until traffic light is green). //wait until
traffic light becomes green; then resume process

If it would clarify the model description, aliases of Advance
may be used. They have to be announced at the start of the
model, for example: Advance=(Work, Wait, Drive, Hold,
Suspend, Standby,..)

Process control.
In real world processes are either repetitive or finite. In order
to model this behavior properly the next process control
clauses may be used.

Loop repeat indefinitely
Loop(n) repeat n times
Loop(condition) repeat while condition is TRUE

Examples:

Loop(SetX.IsNotEmpty) // Empty a Set
1. SetX.Remove.(SetX.First)

Miscellaneous statements.

For file IO, the following clauses are used:

Read // a value (of arbitrary type) to be read from some date
source
Write // a value (of arbitrary type) to be written to some
destination file.

Distributions
Distribution can be any theoretically well-defined distribution
type (uniform, exponential,…) or tabelized or discrete
distribution. Depending on the type a set of parameters
defining the distribution must be added.

Sample(Distribution) // sample from an arbitrary or a specific
distribution.

The Process Model

A Process model consists of three sections:

�� A definition section to describe the element classes and

their attributes.
�� A process section containing the process descriptions of

the active element classes.
�� A model control section to initialize the model and to

control simulation runs.

The ‘if’ clause
1. If (condition)

1.1. Statement
1.2. …….
1.3. Statement

2. Else
2.1. Statement
2.2. …
2.3. Statement

Proceedings of the 16th European Simulation Multiconference (ESM 2002).
June 2002. Darmstadt [SCS]. ISBN 90-77039-07-4

The Definition section

To define the elements of a model the following definition
clauses are used:

�� ChildClass: (ParentClass) to define an object class,

derived from a parent class

Examples:
CShip: (SimElement)
CContainerShip: (Cship)
CSuperTanker: (Cship)

CShip is defined as a child class of the SimElement class,
CContainerShip and CSuperTanker are defined as child classes
of CShip.

�� ClassReference: Class; to define a variable referring to an

element.

Example:
MyShip :Cship
TheShip :Cship
Mammoth :CSuperTanker
MyFleet :Queue

MyShip, TheShip, Mammoth and MyFleet must be assigned
names and values, that refer to "instances" of the class CShip,
CSupertanker and Queue respectively. Remember: a class
definition is nothing more than a blueprint of an object; an
instance is one physical individual (in computer memory)
according to the blueprint.
An instance is created by the class-method ‘Create’ , ‘Arrive’
or 'Generate' and the method generates a reference to the
individual. So the following is a correct description:

MyShip = CShip.Create
TheShip = MyShip

After this sequence MyShip and TheShip refer to the same
individual.

Attributes of a class may be of any type.

For qualifying of attributes (i.e. expressing which instance is
the owner of the attribute) the “dot” notation may be used.

Example: “MyShip.Length” means the length of MyShip.

If readability is improved also “Length of MyShip” may be
used.

For all attributes a further explanation is advisable. The
explanation should be preceded by a //

�� Attributes of an instance are assumed to exist at the

moment the instance is created. Attributes, that are class
references, state the referred existing object explicitly by
means of an assignment or have to be assigned at creation
of the object instance (see example above).

�� Attributes of value types only need to be specified if this
supports the readability of the model description. For
numerical and string values a specification is not needed.
The name of an identifier always should explain its
meaning or function.

�� Attributes may also be class methods (function or
procedure). These methods also have to be elaborated in
process language if this elucidates the process model. This
may be especially the case if a method contains control
functions.

The Process section

In this section the process descriptions are given for all process
element classes defined in the definition section. Each process
description is headed by the process element class name
followed by “.Process”

A process description can use all methods described earlier

The model control section

This section is meant to initialize the model and to control
simulation runs with the model. It is a special Process
description of the overall ‘model element’ and all clauses of
the Process section are available here. Mostly the model
control section will be used to create and start the “permanent”
elements of the model and, in case of a distributed model, to
connect to the distributed environment.

Distributed modeling

If the model is to be distributed consisting of sub- or member-
models running synchronized on different computers, then the
process model presented here does not change in essence.
(Ottjes and Veeke, 2001). Synchronization of the sub models
is a technical matter that does not influences the process
model.

THE JOB SHOP CASE

To conclude a complete example of a job shop model of figure
1 is described in PDL and given below and part of the
implementation in the simulation package Tomas is shown.
The process model of a job shop:

Definition Section

MachineGroup: (SimElement)
�� MachineSet:Set //contains the Machines of the group
�� IdleSet:Queue //represents the set of all idle machines
�� JobQ:Queue //contains the Jobs to be executed by the

group

Machine: (SimElement)
�� MyGroup:MachineGroup //refers to the group the machine

belongs to
�� MyJob:Job //refers to the Job assigned to this machine
�� MyTask:Task //refers to the task in execution by this

machine

Proceedings of the 16th European Simulation Multiconference (ESM 2002).
June 2002. Darmstadt [SCS]. ISBN 90-77039-07-4

�� SelectJob: Method // selects Job from MyGroup.JobQ
�� Process: Method

JobGenerator: (SimElement)
�� GJob:Job // refers to the instance of job being generated
�� GTask:Task // refers to the instance of task being generated
�� DueDateDistribution // distribution of due dates
�� Process: Method

Job: (SimElement)
�� TaskList: Set // contains all tasks being part of the job
�� DueDate // required Job completion time .

Task: (SimElement)
�� OnGroup:MachineGroup // the machine group the task is to be

executed on
�� ExecTime // execution time of a task

Process section

JobGenerator.Process
Loop
1. Advance(Sample(‘interarrival time of jobs’))
2. GJob = Job.Generate
3. GJob.DueDate = sample(‘DueDateDistribution’)
4. Loop(Sample(‘number of tasks per job’)

4.1. GTask = Task.Generate
4.2. GTask.OnGroup = Sample(‘group to be executed on’)
4.3. GTask.ExecTime = Sample(‘execution time’)
4.4. GTask.Enter(GJob.TaskList)

5. GJob.Enter(Tasklist.First.OnGroup.JobQ)

Machine.Process
Loop
1. Loop(MyGroup.JobQ.IsNotEmpty)

1.1. MyJob = SelectJob
1.2. MyGroup.JobQ.Remove (MyJob)
1.3. MyTask=MyJob.TaskList.First
1.4. MyJob.TaskList.Remove (MyTask)
1.5. Advance(MyTask.Exectime)
1.6. If MyJob.TaskList Not Empty

1.6.1. MyJob.Enter(MyJob.TaskList.First.OnGroup.JobQ)
1.7. else

1.7.1. MyJob.Free //this job is ready
2. Enter(IdleSet)
3. Advance(MyGroup.JobQ.IsEmpty)
4. Leave(IdleSet)

Machine.SelectJob :Method
�� Jobx :Job // variable referring to Job
1. Jobx = MyGroup.JobQ.First
2. Return Jobx

OR

Machine.SelectJob :Method
�� Jobx :Job // variable referring to Job
1. Jobx = Job in MyGroup.JobQ with smallest DueDate
2. Return Jobx

Model Control section

MAIN
1. Loop(Read number of machine groups)

1.1. MachineGroup.Arrive
1.2. Loop(Read number of machines in group)

1.2.1. Machine.Arrive
1.2.2. Machine.Enter(MachineSet)
1.2.3. Machine.Start(Now)

2. Generator.Arrive
3. Generator.Start(Now)
4. Advance(20000)
5. Finish

Model Implementation

If, after completion of the process model, it is decided to really
implement the model in a computer model, a simulation
language is to be used, preferably a language that supports
process interaction modeling. (Healy, 1997), (Veeke, Ottjes,
2000). As an illustration here some important parts of the
implemented job shop model in Tomas (Veeke, Ottjes, 2002)
are shown. In Tomas the SimElement class is called
TomasElement and the Set class is called TomasQueue.
Further in Tomas Advance(t) is coded as Hold(t) and
Advance(Condition) is coded as: While (Condition) Do Standby;

//Definition of Classes MachineGroup, Machine,
//Job and Task in Tomas

 TMachineGroup = class(TomasElement)
 GroupNr :integer;
 MachineSet:TomasQueue; //contains Machines of the group
 IdleSet :TomasQueue; //set of idle machines
 JobQ :TomasQueue; //contains Jobs for the group
 Published
 procedure writeToLate;//register difference of due date and real

completion time
end;

 TMachine = class(TomasElement)
 MyGroup:TMachineGroup; // refers to its group
 MyJob :TJob; // selected Job
 MyTask :TTask; // the task in execution
 Published
 Function SelectJob:Tjob; // selects Job from MyGroup.JobQ
 Procedure Process; override;
 end;

TJob = class(TomasElement)
 TaskList: TomasQueue;// contains all tasks of the job
 DueDate :double; // due date of job
end;

TTask = class(TomasElement)
 OnGroup:TMachineGroup; // machinegroup of the task
 ExecTime:double; // execution time of a task
end;

//Machine process in Tomas
Procedure TMachine.Process;
begin
 while true do
 begin
 while(MyGroup.JobQ.Length>0) do
 begin

Proceedings of the 16th European Simulation Multiconference (ESM 2002).
June 2002. Darmstadt [SCS]. ISBN 90-77039-07-4

 MyJob :=SelectJob;
 MyTask:=MyJob.TaskList.FirstElement;
 MyJob.TaskList.Remove (MyTask);
 MyGroup.JobQ.Remove (MyJob);
 Hold(MyTask.Exectime);
 if MyJob.TaskList.Length>0 then
 begin
 MyJob.EnterQueue
 (MyJob.TaskList.FirstElement.OnGroup.JobQ);
 end else
 begin //MyJob is ready
 MyGroup.WriteToLate(Tnow-MyJob.DueDate);
 MyJob.Free;
 end;
 end;
 EnterQueue(MyGroup.IdleSet);
 while (MyGroup.JobQ.Length=0) do
 begin
 Standby;
 end;
 LeaveQueue(MyGroup.IdleSet);
 end;
end;

//Select job method: First in First out:
Function TMachine.SelectJob:Tjob;
 begin
 SelectJob:=(MyGroup.JobQ.FirstElement);
 end;

CONCLUSIONS

An informal object oriented Process Description Language has
been elaborated to be used to design and adapt process-
oriented discrete simulation models in a fast and flexible way.
In the modeling, the concepts of time management and
concurrency of processes are taken into account. In order to
increase modeling flexibility the process-interaction method
has been interpreted in a way that the active elements are taken
to be entities that do the processing. The advantage of this
prototype-modeling step is that the modeler can concentrate
fully on the content of the system to be modeled and that the
model remains accessible to systems experts. The approach is
especially beneficial if in the final coding stage simulation
software is used that supports process interaction modeling.
The method is now being applied in modeling large-scale
logistic systems and is part of logistic simulation courses.

REFERENCES

Birtwistle, G. M., O. J. Dahl, B. Myhrhang, K. Mygrard (1973),
Simula Begin, Van Nostrand Reinhold, New York.

Duinkerken, M.B, J.J.M. Evers; J.A. Ottjes. 2001.” A simulation
model integrating quay transport and stacking policies on automated
container terminals”. Proceedings of the 15th European Simulation
Multiconference. Prague (SCS) pp 909-916.

Fishman, G.S. 2001. Discrete Event Simulation. Modeling,
Programming, and Analysis. @001 Springer-Verlag New York,
Inc. ISBN: 0-387-95160-1, 52-59

Healy, J. R.A. Kilgore, 1997. "Silk,: A Java-Based Process
Simulation Language". Proceedings of the 1997 Winter Simulation
Conference, IEEE,

Hooper, J. W, 1986. Strategy related characteristics of discrete-
event languages and models. Simulation 46(4).

Ottjes J.A., Veeke H. P.M, and Buizer A.A, 2001: Experimenting
with distributed modeling and simulation using the internet.
Proceedings of 15th European Simulation Multiconference
(ESM2001) pp. 909-916. June 6-9, 2001 Prague, Czech Republic.
ISBN:1-56555-225-3

B. J. Overeinder (2000), Distributed Event-driven Simulation –
Scheduling Strategies and Resource Management, ASCI dissertation
series no. 58, Amsterdam.

Robert, C.A., Dessouky, M, 1998. “An Overview of Object-Oriented
Simulation”. Simulation vol:70:6, pp. 359-368. 1998.

Veeke, Hans P.M., Jaap A. Ottjes, 2000. Tomas: Tool for Object-
oriented Modeling And Simulation. In proceedings of Advanced
Simulation Technology Conference (ASTC2000). April 16-20, 2000,
Washington, D.C. pp. 76-81. The Society for Computer Simulation
International (SCS),
ISBN: 1-56555-199-0

Veeke, Hans P.M., , Jaap A. Ottjes, 2002 “A generic simulation
model for systems of container terminals ”, Submitted to the 16th
European Simulation Multiconference ESM 2002, Darmstadt.

Veeke, Hans P.M., Jaap A. Ottjes, 2002. TomasWeb: web site:
www.tomasweb.com

Wortmann, A.M. 1991. Modeling and Simulation of Industrial
Systems. Dissertation Fac. Of Mechanical Engineering, Eidhoven
University of Technology (1991). ISBN 90-72015-91-6

Zeigler B.P., Praehofer H and Kim T.G., 2000. “Theory of
Modeling and Simulation 2nd Ed. Academic Press, San Diego

http://www.tomasweb.com/

	Delft University of Technology
	INTRODUCTION
	WORLDVIEWS ON DISCRETE-EVENT SIMULATION
	THE PROCESS INTERACTION APPROACH
	The job shop: An intuitive process model.
	Figure 1. The Job Shop schematically. Jobs consist of a sequential list of tasks to be executed. The machine groups contain a number of identical machines. Each group has a job queue with jobs waiting to be executed.
	A PROCESS DESCRIPTION LANGUAGE
	Class SimElement with the following methods as attributes:
	
	
	Class Set

	Process description clauses related to system time

	If (condition)
	Else
	
	
	The Process Model

	Distributed modeling
	THE JOB SHOP CASE

	The process model of a job shop:
	Definition Section

	Process section
	JobGenerator.Process
	Machine.Process
	Machine.SelectJob :Method
	OR
	Machine.SelectJob :Method
	Model Control section

