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INTRODUCTION 
 
Simulation has become a common tool in research 
projects and large logistic and manufacturing 
design projects.  
Because of the growing scale, the need for 
distributed simulation grows rapidly also. Usually it 
is developed from a general information system 
approach e.g. by means of  HLA (Kuhl et al., 1999] 
and CORBA [Adamski, Hiller, 1998].  
Technically these approaches focus on ‘data-
integrity’, but no provisions are made for model-
integrity. Above that, complete knowledge about 
the final simulation structure is required. The 
iterative course of a design project however, 
requires a smooth (and preferably transparent) 
transition from stand-alone to distributed 
simulation. 
The approach as described in this paper, preserves 
model integrity for process interaction simulation 
and is implemented in the free source language 
TOMAS as can be found on TOMASWEB.COM 
First the basic elements and process interaction 
methods for stand-alone simulation are described 
and then a short description of the concepts used in 
TOMAS for distributed simulation are explained. 
The concept is restricted to conservative distributed 
simulation. 
 
 
STAND ALONE SIMULATION 
 
According to Zeigler[2000] the process interaction 
world view identifies the elements of the model and 
describes the sequence of actions for each element 
in a structured way. In the process interaction world 
view, the simulation is considered a collection of 
interactions among processes. This world view 
focuses on a sequence of events and/or activities 
that are logically connected. There are two different 
views to connect events and activities. Each view 
corresponds to a different assumption as to what are 
the active and passive elements in building a model. 
In the first view the active elements are taken to be 
the elements that do the processing, in the second 
view the active elements are the flow elements. The 
first one is called pure “process interaction“ and the 
second one the “transaction” world view. From a 

modeler’s point of view events have no explicit 
meaning. From a processor’s point of view the 
system is still based on event scheduling and an 
event scheduling mechanism is still required. 
The “pure” process interaction world view has been 
implemented in an object oriented way in the 
simulation language TOMAS [Veeke, Ottjes, 
2000]. The approach matches with a formal systems 
approach to model logistic and manufacturing 
systems [Veeke, 2003]. In order to connect them in 
an interdisciplinary way to behavior descriptions of 
these systems, an intermediate Process Description 
Language PDL has been developed [Ottjes, Veeke, 
2002]. 
     
TOMAS implements two basic object classes for 
stand alone simulation: TomasElement and 
TomasQueue. The TomasQueue class supports fast 
and easy methods to collect, select, sort and register 
TomasElements during the course of a simulation 
run. Table 1 shows the basic methods of the 
TomasQueue class. 
 
Method Description 
AddToTail(Elm)  
AddToHead(Elm) 

To add element Elm to 
the tail or head of the 
queue 

AddSorted(Elm,Sort) To add element Elm to 
the queue sorted by 
procedure Sort 

PutBefore(E1, E2) 
PutAfter(E1,E2) 

To put E1 before or 
after E2 into the queue  

FirstElement 
LastElement 

To retrieve the first or 
last element in the 
queue 

Successor(Elm) 
Predecessor(Elm) 

To retrieve the 
successor or predecessor 
of Elm 

Length 
MeanLength 
MinLength 
MaxLength 

To retrieve the actual, 
mean, minimum or 
maximum length of the 
queue 

MeanWT 
MinWT 
MaxWT 

To retrieve the mean, 
minimum or maximum 
length of stay  

 
Table 1. Basic methods of TomasQueue 
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With the TomasElement class both the active and 
passive model elements can be represented. Passive 
TomasElements are the model elements being 
handled or transformed by the active 
TomasElements.  The latter have their own Process 
description method. All TomasElements have an 
Identity attribute, an Arrival Time, an Event Time 
and a Status. 
The Status attribute is directly related to the process 
interaction approach. In TOMAS, 4  values for the 
Status are defined (see fig.1.) 
 
 

Scheduled Conditioned 

Active 

Suspended 

While Conditon 
Standby 

Hold(t) 

Suspend 

 
 
Fig. 1. State values of a Process 
 
A process status can be: 
 

- Suspended: the TomasElement “sleeps” 
and no future event has been defined.  

- Active: the TomasElement is the “current” 
element and executing it’s event. 

- Scheduled: the TomasElement is waiting 
for the simulation clock to arrive at a 
predefined event time to become “active”. 

- Conditioned: the TomasElement is waiting 
for a condition to become false and  then 
to be come “active”. 

 
As shown in figure 1, a TomasElement must be in 
the state “Active” to be able to change its state. The 
sequencing mechanism of TOMAS offers three 
methods for this purpose: 
 

- Hold(t): The execution of the process 
description is interrupted and will be 
resumed at the current simulation clock 
time + t. 

- While Condition Standby: the execution of 
the process description is interrupted and 
will be suspended as long as Condition 
holds. 

- Suspend: the execution of the process 
description is interrupted indefinitely. 

 
All states except the “Active” state, represent time 
periods; the Active state represents an event. 
 
The ‘Suspended’ state is the initial state of every 
TomasElement. Figure 1 shows that an “external” 
cause is required to change the process to another 

state. Here we reach the important issue of “process 
interaction”. 
 
 
STAND ALONE PROCESS INTERACTION 
 
The only way for a TomasElement to become the 
active element is to become Scheduled by means of 
another TomasElement. If the simulation clock time 
reaches the moment where the element is 
Scheduled, the sequencing mechanism causes it to 
become Active. The process description uses the 
above mentioned method to change to the other 
states autonomously during the course of its 
process. However, there can be circumstances 
where the normal process course – and thus the 
states Scheduled, Conditioned and Suspended, 
should be interrupted e.g. because of a machine 
disturbance, or the arrival of a new order etc. For 
these situations the TomasElement class offers a 
number of methods to intervene with the processes 
of other elements. They are shown in figure 2. 
 
 

Scheduled ConditionedSuspended 

Interrupted 

Stop Stop

Start
Resume

Start
Resume Proceed Pause 

Stop 

 
 
Fig. 2. Process interactions 
 
In the upper part of figure 2 the three time 
consuming states of figure 1 are shown. For 
example, a TomasElement can force another 
element to change from the state Suspended to 
Scheduled by means of the Start or Resume 
method. A short description of each method is 
given in the table below. 
 
Method Description 
Start(t) Start the process of the element at 

simulation time t, beginning with 
the first statement of description.  

Resume Resume the process of the element, 
with the statement immediately 
following the last executed 
statement, which can be Hold, 
Suspend or StandBy 

Stop Make the process of the element 
Suspended 

Pause Pause the execution of the process, 
but remember the state it is in and 
the time left for its next event 

Proceed Resume the execution of the process 
as remembered by the Pause method 

 
Table 2. Process interaction methods 
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The Pause method introduces a new process state: 
“Interrupted”. Interrupted can be compared with 
Suspended with the difference that the state of the 
process is completely remembered. From the 
Interrupted state one may decide to continue the 
process by means of Proceed, to start it from the 
beginning by means of Start or to Resume the 
process, skipping the state it was in. 
 
Figure 2 shows clearly that the methods can only be 
invoked in certain situations, depending on the state 
of the process. Starting a process with Start(t) is 
only allowed if the process is in a Suspended or 
Interrupted state. The sequencing mechanism of 
TOMAS preserves this type of “process integrity”.  
 
 
DISTRIBUTED SIMULATION 
 
In research situations and large industrial projects, 
it often happens that a simulation model grows in 
size and detail and more than one modeler is 
constructing separate parts of the model. In these 
cases it will be very profitable if the model can be 
split up easily into different stand-alone models that 
will be synchronized to the same simulation clock. 
Until now the client-server concept of TOMAS 
facilitates distributed simulation for both a fast 
conservative approach and real-time situations. 
However, the transition from a stand-alone model 
to a set of distributed models was quite labor-
intensive. 
The conservative approach can best be described by 
distributing the processes over several processors, 
but allowing only one processor to be really 
‘processing’ at any one moment. It is just as “quasi-
parallel” as the stand-alone situation. However, 
instead of one sequencing mechanism, there are 
several sequencing mechanisms now. Because of 
this (and of course because of distributing “data”) 
the integrity of the model  is not automatically 
preserved. To find a solution it is necessary to 
define the term integrity precisely.  
Model integrity is defined as the preservation of 
correct values and correct process states at any 
moment at any model during a simulation run. The 
preservation of correct values in a stand-alone 
situation is automatically preserved by TOMAS, 
because it is a single processor application where 
no threads or agents are being used. There is also 
only one sequencing mechanism present, which 
takes care of the process states. From the above 
definition it becomes clear that we should 
distinguish data-integrity and process-integrity. 
 
 
DATA-INTEGRITY  
 

Data-integrity could be achieved by using HLA or 
CORBA for example. However, the application of 
HLA and CORBA is not straightforward and again 
very labor-intensive. TOMAS uses a simple, but 
fast TCP/IP-based message concept that can be 
made transparent for the modeler, where the data-
integrity of TomasElements and TomasQueues is 
concerned.  
 
The basic assumptions to achieve this type of 
integrity are: 
 

- Only one processor is actually processing 
- Only one process is actually ‘Active’ 

during the simulation run 
- The “same” TomasElement may be 

present in different models, but not 
necessarily with the same attributes. 

 
The last assumption needs some explanation. 
Usually data-integrity leads to the requirement that 
each object may only be present once and only once 
in the whole model structure. There are two reasons 
to drop this requirement: 

- in each participating model, the same 
object can play a different role with 
different attributes. For example, a 
container in a transportation model only 
needs a size and weight, while the same 
container needs other attributes like 
“empty/not empty” and “reefer/non-reefer” 
in a storage model.  

- By restricting this approach to the 
conservative distributed concept, only one 
model is running at any moment. So there 
is only one source, which can alter the 
attribute values. 

Data-integrity can now be preserved by updating 
the common and generally defined attribute values 
at the moment that the active model returns control 
to the server in order to advance the simulation 
clock. The implementation of data-integrity can 
thus be achieved by defining one object (class) 
definition in one model to be the “home element” 
and the other ones in the other models  to be 
“remote elements”. It is up to the modeler to decide 
on which class definition is to be considered the 
home definition. As soon as a model containing 
remote elements returns control to the server, the 
sequencing mechanism communicates all changed 
objects to the server. The server distributes these 
updates to the “home” models involved. To realize 
this distinction TOMAS now recognizes a 
“TRemoteElement” class. The home element can 
still be defined as a TomasElement class.  
 
Example 
 
Suppose a distributed model of container transfer 
contains a.o three submodels: a generator model, an 
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AGV transportation model (Automatic Guide 
Vehicles) and a Storage model. The modeler 
decides to define the container class in the 
generator model as the home element class. The 
class definitions in the model could look like the 
ones shown in table 3 (in Delphi Pascal).  
 
Generator model 
 
Tcontainer = class(TomasElement) 
  Size: Integer; 
  Weight: Integer; 
  Reefer: Boolean; 
  Empty: Boolean; 
  Stored: Boolean; 
End; 
 
AGV Transportation model 
 
TContainer = class(TRemoteElement) 
  Size: Integer; 
  Weight: Integer; 
  OnAGV: AGVReference; 
End; 
 
Storage Model 
 
TContainer = class(TRemoteElement) 
  Size: Integer; 
  Reefer: Boolean; 
  Empty: Boolean; 
  StackPosition: XYZ_Position; 
  Stored: Boolean. 
End; 
 
 
Table 3. Home and remote elements 
 
Size, Weight, Reefer and Empty are considered the 
common attributes here. At the first time after 
receiving control from the server, a model refers to 
a container, the attribute values of the home 
element are “automatically” communicated through 
the distributed sequencing mechanism of TOMAS. 
If other models need to know the StackPosition, the 
modeler is free to add this attribute to the definition 
in the Generator model. If the container is stored in 
the Storage model, the “Stored” attribute is set to 
TRUE and when this model returns control to the 
Server again, this attribute value is automatically 
updated by the distributed sequencing mechanism. 
    
 
PROCESS-INTEGRITY 
 
Process-integrity (as defined by figure 2) should be 
preserved by and between the different sequencing 
mechanisms.  In this way it can be made (almost) 
transparent to the modeler. 
Two situations should be distinguished: 

 
1. the process description of an element is 

completely contained in only one 
participating model. 

2. The process description is split into parts, 
where each part is contained in a different 
model.   

 
In situation 1 the process interaction methods of 
figure 2 can be called from any model. Suppose the 
home element is defined in the model containing its 
process description. The other models contain the 
remote element definition, but remote elements also 
have process interaction methods. In this case, a 
call to “Start” the process of a remote element is 
interpreted by the distributed sequencing 
mechanism and translated into a “Start message” 
for the home element. The sequencing mechanism 
in the home model receives the message and 
performs the required action if it is allowed (just as 
it did in the stand alone case).  
Situation 2 however is more complicated. The 
distinction between home and remote element 
definitions is not sufficient to guarantee process 
integrity. It should be guaranteed that the element 
can be active, scheduled or conditioned in only one 
model at a time. To achieve this an extra process 
state “Disabled” is introduced. At the moment of 
creation the home element initializes to the state 
“Suspended”. Above that, all remote elements are 
considered “Disabled” initially. Process interaction 
statements are considered to apply to the one 
element which is not “Disabled”. Now the method 
to perform the state transitions to and from the state 
“Disabled” must be defined. For this purpose the 
element method “SwitchToModel(modelname)” is 
introduced. The method is defined for both home 
and remote elements.  
First of all this method can be called by the element 
itself whenever it is in the Active state (see figure 
3). 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 3. State values of a distributed process 
 
By calling “SwitchToModel” the element itself will 
become “Disabled” and the distributed sequencing 
mechanism sends a message to the server to enable 
the corresponding (home or remote) element in the 
model mentioned. If the sequencing mechanism in 

While  
Scheduled Conditioned

Active

Suspended

Conditon
Standby

Hold(t)

Suspend 

Disabled

SwitchToModel
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this model receives this “enable”-message it 
changes the state of the element concerned to 
“Scheduled” at the current simulation clock time. 
The process of this element will resume its course 
from the statement following a SwitchToModel or 
–if it is the first time of enabling- will start its 
process description. 
  
Secondly, if the SwitchToModel is called when the 
element is not Active, the process is required to be 
in a Suspended state. It is physically impossible to 
be scheduled, conditioned or interrupted in two 
models at a time. Therefore SwitchToModel will 
only be accepted by the sequencing mechanism if 
the element is Suspended or Active. As described 
above, when the element is “enabled” it changes 
from a Disabled to a Scheduled state. Figure 4 now 
shows the process interactions in a distributed 
environment. 
 
 
 
 
 

Scheduled ConditionedSuspended 

Interrupted 

Stop Stop 
Start 
Resume 

Start 
Resume Proceed Pause 

Stop 

 
 
Figure 4. Distributed Process Interactions. 
 
Example  
 
Suppose a transportation system with Automatic 
Guided Vehicles (AGV) provides the transport of 
containers between quay cranes and stacking 
cranes. Arriving at a quay crane AGV’s line up in a 
QuaycraneQueue and drive forward until they reach 
the transfer position. There an AGV is loaded and 
drives to a stacking crane. At a stacking crane it 
searches a free position and waits until the 
container is picked. Then the AGV drives to the 
next quay crane.  
Initially the process of an AGV was completely 
described in one stand alone model. The process 
description of an AGV looked like below 
(assuming an AGV starts at a transfer position near 
a stacking crane). 
 
Process of an AGV 
 

While TRUE Do 
Begin 
   While JobList.Length = 0 Do 
      StandBy; 
   Hold(Drivetime); 
   EnterQueue(QuaycraneQueue); 
   Suspend; 

   Hold(DriveTime) ; 
   EnterQueue(TransferPositions) ; 
   Suspend; 
End; 

The model is now split up in three different models: 
a Quay crane Model, an AGV model and a Stacking 
model. In order to study the behavior and control at 
quay cranes and stacking cranes further, the process 
of an AGV is also split up. This is now easily 
accomplished as shown below. 
 
AGV_model 
 
Process of an AGV 

While TRUE Do 
Begin 
   While JobList.Length = 0 Do 
      StandBy; 
   Hold(Drivetime); 
   SwitchToModel(Quaycrane_model); 
   Hold(DriveTime) ; 
   SwitchToModel(StackingModel) 
End; 

 
Quaycrane_model 
 
Process of an AGV 

While TRUE Do 
Begin 
  EnterQueue(QuaycraneQueue); 

       Suspend; 
  SwitchToModel(AGV_model) ; 
End; 

 
 
Stacking_model 
 
Process of an AGV 

While TRUE Do 
Begin 
  EnterQueue(TransferPositions); 

       Suspend; 
  SwitchToModel(AGV_model) ; 
End; 

 
Now in each of the models the descriptions can be 
further detailed independently and concurrently. 
 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
It has been shown that the use of distributed 
simulation can be logically connected to a stand 
alone approach. In this article distributed simulation 
was restricted to the conservative (i.e. quasi-
parallel) concept. In this case the requirements of 
model integrity should be preserved as they already 
are in the stand alone environment. In TOMAS this 
has been implemented by distinguishing home and 
remote elements, by introducing an extra process 

SwitchToModel 
Disabled 
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state “Disabled” and by adding an extra process 
interaction method “SwitchToModel”. In the near 
future the concept will be expanded for real-time 
distributed simulation in order to support 
prototyping of real equipment and control software. 
 
The model integrity concept will be used in a 
starting research project VISITOR, which aims to 
construct a virtual industrial system for education 
and research purposes.  
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