
Proceedings of the 2003 European Simulation and Modelling Conference (ESM2003)
Pp:277-282. October 2003. Naples, Italy. ISBN: 90-77381-04-X

MODEL INTEGRITY AND DISTRIBUTED PROCESS INTERACTION SIMULATION

Hans P.M. Veeke, Jaap A. Ottjes
Faculty of Mechanical Engineering and Marine Technology, OCP

Delft University of Technology
Mekelweg 2, 2628 CD Delft, the Netherlands

E-mail: H.P.M.Veeke@wbmt.tudelft.nl, J.A.Ottjes@wbmt.tudelft.nl

INTRODUCTION

Simulation has become a common tool in research
projects and large logistic and manufacturing
design projects.
Because of the growing scale, the need for
distributed simulation grows rapidly also. Usually it
is developed from a general information system
approach e.g. by means of HLA (Kuhl et al., 1999]
and CORBA [Adamski, Hiller, 1998].
Technically these approaches focus on ‘data-
integrity’, but no provisions are made for model-
integrity. Above that, complete knowledge about
the final simulation structure is required. The
iterative course of a design project however,
requires a smooth (and preferably transparent)
transition from stand-alone to distributed
simulation.
The approach as described in this paper, preserves
model integrity for process interaction simulation
and is implemented in the free source language
TOMAS as can be found on TOMASWEB.COM
First the basic elements and process interaction
methods for stand-alone simulation are described
and then a short description of the concepts used in
TOMAS for distributed simulation are explained.
The concept is restricted to conservative distributed
simulation.

STAND ALONE SIMULATION

According to Zeigler[2000] the process interaction
world view identifies the elements of the model and
describes the sequence of actions for each element
in a structured way. In the process interaction world
view, the simulation is considered a collection of
interactions among processes. This world view
focuses on a sequence of events and/or activities
that are logically connected. There are two different
views to connect events and activities. Each view
corresponds to a different assumption as to what are
the active and passive elements in building a model.
In the first view the active elements are taken to be
the elements that do the processing, in the second
view the active elements are the flow elements. The
first one is called pure “process interaction“ and the
second one the “transaction” world view. From a

modeler’s point of view events have no explicit
meaning. From a processor’s point of view the
system is still based on event scheduling and an
event scheduling mechanism is still required.
The “pure” process interaction world view has been
implemented in an object oriented way in the
simulation language TOMAS [Veeke, Ottjes,
2000]. The approach matches with a formal systems
approach to model logistic and manufacturing
systems [Veeke, 2003]. In order to connect them in
an interdisciplinary way to behavior descriptions of
these systems, an intermediate Process Description
Language PDL has been developed [Ottjes, Veeke,
2002].

TOMAS implements two basic object classes for
stand alone simulation: TomasElement and
TomasQueue. The TomasQueue class supports fast
and easy methods to collect, select, sort and register
TomasElements during the course of a simulation
run. Table 1 shows the basic methods of the
TomasQueue class.

Method Description
AddToTail(Elm)
AddToHead(Elm)

To add element Elm to
the tail or head of the
queue

AddSorted(Elm,Sort) To add element Elm to
the queue sorted by
procedure Sort

PutBefore(E1, E2)
PutAfter(E1,E2)

To put E1 before or
after E2 into the queue

FirstElement
LastElement

To retrieve the first or
last element in the
queue

Successor(Elm)
Predecessor(Elm)

To retrieve the
successor or predecessor
of Elm

Length
MeanLength
MinLength
MaxLength

To retrieve the actual,
mean, minimum or
maximum length of the
queue

MeanWT
MinWT
MaxWT

To retrieve the mean,
minimum or maximum
length of stay

Table 1. Basic methods of TomasQueue

Proceedings of the 2003 European Simulation and Modelling Conference (ESM2003)
Pp:277-282. October 2003. Naples, Italy. ISBN: 90-77381-04-X

With the TomasElement class both the active and
passive model elements can be represented. Passive
TomasElements are the model elements being
handled or transformed by the active
TomasElements. The latter have their own Process
description method. All TomasElements have an
Identity attribute, an Arrival Time, an Event Time
and a Status.
The Status attribute is directly related to the process
interaction approach. In TOMAS, 4 values for the
Status are defined (see fig.1.)

Scheduled Conditioned

Active

Suspended

While Conditon
Standby

Hold(t)

Suspend

Fig. 1. State values of a Process

A process status can be:

- Suspended: the TomasElement “sleeps”
and no future event has been defined.

- Active: the TomasElement is the “current”
element and executing it’s event.

- Scheduled: the TomasElement is waiting
for the simulation clock to arrive at a
predefined event time to become “active”.

- Conditioned: the TomasElement is waiting
for a condition to become false and then
to be come “active”.

As shown in figure 1, a TomasElement must be in
the state “Active” to be able to change its state. The
sequencing mechanism of TOMAS offers three
methods for this purpose:

- Hold(t): The execution of the process
description is interrupted and will be
resumed at the current simulation clock
time + t.

- While Condition Standby: the execution of
the process description is interrupted and
will be suspended as long as Condition
holds.

- Suspend: the execution of the process
description is interrupted indefinitely.

All states except the “Active” state, represent time
periods; the Active state represents an event.

The ‘Suspended’ state is the initial state of every
TomasElement. Figure 1 shows that an “external”
cause is required to change the process to another

state. Here we reach the important issue of “process
interaction”.

STAND ALONE PROCESS INTERACTION

The only way for a TomasElement to become the
active element is to become Scheduled by means of
another TomasElement. If the simulation clock time
reaches the moment where the element is
Scheduled, the sequencing mechanism causes it to
become Active. The process description uses the
above mentioned method to change to the other
states autonomously during the course of its
process. However, there can be circumstances
where the normal process course – and thus the
states Scheduled, Conditioned and Suspended,
should be interrupted e.g. because of a machine
disturbance, or the arrival of a new order etc. For
these situations the TomasElement class offers a
number of methods to intervene with the processes
of other elements. They are shown in figure 2.

Scheduled ConditionedSuspended

Interrupted

Stop Stop

Start
Resume

Start
Resume Proceed Pause

Stop

Fig. 2. Process interactions

In the upper part of figure 2 the three time
consuming states of figure 1 are shown. For
example, a TomasElement can force another
element to change from the state Suspended to
Scheduled by means of the Start or Resume
method. A short description of each method is
given in the table below.

Method Description
Start(t) Start the process of the element at

simulation time t, beginning with
the first statement of description.

Resume Resume the process of the element,
with the statement immediately
following the last executed
statement, which can be Hold,
Suspend or StandBy

Stop Make the process of the element
Suspended

Pause Pause the execution of the process,
but remember the state it is in and
the time left for its next event

Proceed Resume the execution of the process
as remembered by the Pause method

Table 2. Process interaction methods

Proceedings of the 2003 European Simulation and Modelling Conference (ESM2003)
Pp:277-282. October 2003. Naples, Italy. ISBN: 90-77381-04-X

The Pause method introduces a new process state:
“Interrupted”. Interrupted can be compared with
Suspended with the difference that the state of the
process is completely remembered. From the
Interrupted state one may decide to continue the
process by means of Proceed, to start it from the
beginning by means of Start or to Resume the
process, skipping the state it was in.

Figure 2 shows clearly that the methods can only be
invoked in certain situations, depending on the state
of the process. Starting a process with Start(t) is
only allowed if the process is in a Suspended or
Interrupted state. The sequencing mechanism of
TOMAS preserves this type of “process integrity”.

DISTRIBUTED SIMULATION

In research situations and large industrial projects,
it often happens that a simulation model grows in
size and detail and more than one modeler is
constructing separate parts of the model. In these
cases it will be very profitable if the model can be
split up easily into different stand-alone models that
will be synchronized to the same simulation clock.
Until now the client-server concept of TOMAS
facilitates distributed simulation for both a fast
conservative approach and real-time situations.
However, the transition from a stand-alone model
to a set of distributed models was quite labor-
intensive.
The conservative approach can best be described by
distributing the processes over several processors,
but allowing only one processor to be really
‘processing’ at any one moment. It is just as “quasi-
parallel” as the stand-alone situation. However,
instead of one sequencing mechanism, there are
several sequencing mechanisms now. Because of
this (and of course because of distributing “data”)
the integrity of the model is not automatically
preserved. To find a solution it is necessary to
define the term integrity precisely.
Model integrity is defined as the preservation of
correct values and correct process states at any
moment at any model during a simulation run. The
preservation of correct values in a stand-alone
situation is automatically preserved by TOMAS,
because it is a single processor application where
no threads or agents are being used. There is also
only one sequencing mechanism present, which
takes care of the process states. From the above
definition it becomes clear that we should
distinguish data-integrity and process-integrity.

DATA-INTEGRITY

Data-integrity could be achieved by using HLA or
CORBA for example. However, the application of
HLA and CORBA is not straightforward and again
very labor-intensive. TOMAS uses a simple, but
fast TCP/IP-based message concept that can be
made transparent for the modeler, where the data-
integrity of TomasElements and TomasQueues is
concerned.

The basic assumptions to achieve this type of
integrity are:

- Only one processor is actually processing
- Only one process is actually ‘Active’

during the simulation run
- The “same” TomasElement may be

present in different models, but not
necessarily with the same attributes.

The last assumption needs some explanation.
Usually data-integrity leads to the requirement that
each object may only be present once and only once
in the whole model structure. There are two reasons
to drop this requirement:

- in each participating model, the same
object can play a different role with
different attributes. For example, a
container in a transportation model only
needs a size and weight, while the same
container needs other attributes like
“empty/not empty” and “reefer/non-reefer”
in a storage model.

- By restricting this approach to the
conservative distributed concept, only one
model is running at any moment. So there
is only one source, which can alter the
attribute values.

Data-integrity can now be preserved by updating
the common and generally defined attribute values
at the moment that the active model returns control
to the server in order to advance the simulation
clock. The implementation of data-integrity can
thus be achieved by defining one object (class)
definition in one model to be the “home element”
and the other ones in the other models to be
“remote elements”. It is up to the modeler to decide
on which class definition is to be considered the
home definition. As soon as a model containing
remote elements returns control to the server, the
sequencing mechanism communicates all changed
objects to the server. The server distributes these
updates to the “home” models involved. To realize
this distinction TOMAS now recognizes a
“TRemoteElement” class. The home element can
still be defined as a TomasElement class.

Example

Suppose a distributed model of container transfer
contains a.o three submodels: a generator model, an

Proceedings of the 2003 European Simulation and Modelling Conference (ESM2003)
Pp:277-282. October 2003. Naples, Italy. ISBN: 90-77381-04-X

AGV transportation model (Automatic Guide
Vehicles) and a Storage model. The modeler
decides to define the container class in the
generator model as the home element class. The
class definitions in the model could look like the
ones shown in table 3 (in Delphi Pascal).

Generator model

Tcontainer = class(TomasElement)
 Size: Integer;
 Weight: Integer;
 Reefer: Boolean;
 Empty: Boolean;
 Stored: Boolean;
End;

AGV Transportation model

TContainer = class(TRemoteElement)
 Size: Integer;
 Weight: Integer;
 OnAGV: AGVReference;
End;

Storage Model

TContainer = class(TRemoteElement)
 Size: Integer;
 Reefer: Boolean;
 Empty: Boolean;
 StackPosition: XYZ_Position;
 Stored: Boolean.
End;

Table 3. Home and remote elements

Size, Weight, Reefer and Empty are considered the
common attributes here. At the first time after
receiving control from the server, a model refers to
a container, the attribute values of the home
element are “automatically” communicated through
the distributed sequencing mechanism of TOMAS.
If other models need to know the StackPosition, the
modeler is free to add this attribute to the definition
in the Generator model. If the container is stored in
the Storage model, the “Stored” attribute is set to
TRUE and when this model returns control to the
Server again, this attribute value is automatically
updated by the distributed sequencing mechanism.

PROCESS-INTEGRITY

Process-integrity (as defined by figure 2) should be
preserved by and between the different sequencing
mechanisms. In this way it can be made (almost)
transparent to the modeler.
Two situations should be distinguished:

1. the process description of an element is

completely contained in only one
participating model.

2. The process description is split into parts,
where each part is contained in a different
model.

In situation 1 the process interaction methods of
figure 2 can be called from any model. Suppose the
home element is defined in the model containing its
process description. The other models contain the
remote element definition, but remote elements also
have process interaction methods. In this case, a
call to “Start” the process of a remote element is
interpreted by the distributed sequencing
mechanism and translated into a “Start message”
for the home element. The sequencing mechanism
in the home model receives the message and
performs the required action if it is allowed (just as
it did in the stand alone case).
Situation 2 however is more complicated. The
distinction between home and remote element
definitions is not sufficient to guarantee process
integrity. It should be guaranteed that the element
can be active, scheduled or conditioned in only one
model at a time. To achieve this an extra process
state “Disabled” is introduced. At the moment of
creation the home element initializes to the state
“Suspended”. Above that, all remote elements are
considered “Disabled” initially. Process interaction
statements are considered to apply to the one
element which is not “Disabled”. Now the method
to perform the state transitions to and from the state
“Disabled” must be defined. For this purpose the
element method “SwitchToModel(modelname)” is
introduced. The method is defined for both home
and remote elements.
First of all this method can be called by the element
itself whenever it is in the Active state (see figure
3).

Figure 3. State values of a distributed process

By calling “SwitchToModel” the element itself will
become “Disabled” and the distributed sequencing
mechanism sends a message to the server to enable
the corresponding (home or remote) element in the
model mentioned. If the sequencing mechanism in

While
Scheduled Conditioned

Active

Suspended

Conditon
Standby

Hold(t)

Suspend

Disabled

SwitchToModel

Proceedings of the 2003 European Simulation and Modelling Conference (ESM2003)
Pp:277-282. October 2003. Naples, Italy. ISBN: 90-77381-04-X

this model receives this “enable”-message it
changes the state of the element concerned to
“Scheduled” at the current simulation clock time.
The process of this element will resume its course
from the statement following a SwitchToModel or
–if it is the first time of enabling- will start its
process description.

Secondly, if the SwitchToModel is called when the
element is not Active, the process is required to be
in a Suspended state. It is physically impossible to
be scheduled, conditioned or interrupted in two
models at a time. Therefore SwitchToModel will
only be accepted by the sequencing mechanism if
the element is Suspended or Active. As described
above, when the element is “enabled” it changes
from a Disabled to a Scheduled state. Figure 4 now
shows the process interactions in a distributed
environment.

Scheduled ConditionedSuspended

Interrupted

Stop Stop
Start
Resume

Start
Resume Proceed Pause

Stop

Figure 4. Distributed Process Interactions.

Example

Suppose a transportation system with Automatic
Guided Vehicles (AGV) provides the transport of
containers between quay cranes and stacking
cranes. Arriving at a quay crane AGV’s line up in a
QuaycraneQueue and drive forward until they reach
the transfer position. There an AGV is loaded and
drives to a stacking crane. At a stacking crane it
searches a free position and waits until the
container is picked. Then the AGV drives to the
next quay crane.
Initially the process of an AGV was completely
described in one stand alone model. The process
description of an AGV looked like below
(assuming an AGV starts at a transfer position near
a stacking crane).

Process of an AGV

While TRUE Do
Begin
 While JobList.Length = 0 Do
 StandBy;
 Hold(Drivetime);
 EnterQueue(QuaycraneQueue);
 Suspend;

 Hold(DriveTime) ;
 EnterQueue(TransferPositions) ;
 Suspend;
End;

The model is now split up in three different models:
a Quay crane Model, an AGV model and a Stacking
model. In order to study the behavior and control at
quay cranes and stacking cranes further, the process
of an AGV is also split up. This is now easily
accomplished as shown below.

AGV_model

Process of an AGV

While TRUE Do
Begin
 While JobList.Length = 0 Do
 StandBy;
 Hold(Drivetime);
 SwitchToModel(Quaycrane_model);
 Hold(DriveTime) ;
 SwitchToModel(StackingModel)
End;

Quaycrane_model

Process of an AGV

While TRUE Do
Begin
 EnterQueue(QuaycraneQueue);

 Suspend;
 SwitchToModel(AGV_model) ;
End;

Stacking_model

Process of an AGV

While TRUE Do
Begin
 EnterQueue(TransferPositions);

 Suspend;
 SwitchToModel(AGV_model) ;
End;

Now in each of the models the descriptions can be
further detailed independently and concurrently.

CONCLUSIONS AND FUTURE RESEARCH

It has been shown that the use of distributed
simulation can be logically connected to a stand
alone approach. In this article distributed simulation
was restricted to the conservative (i.e. quasi-
parallel) concept. In this case the requirements of
model integrity should be preserved as they already
are in the stand alone environment. In TOMAS this
has been implemented by distinguishing home and
remote elements, by introducing an extra process

SwitchToModel
Disabled

Proceedings of the 2003 European Simulation and Modelling Conference (ESM2003)
Pp:277-282. October 2003. Naples, Italy. ISBN: 90-77381-04-X

state “Disabled” and by adding an extra process
interaction method “SwitchToModel”. In the near
future the concept will be expanded for real-time
distributed simulation in order to support
prototyping of real equipment and control software.

The model integrity concept will be used in a
starting research project VISITOR, which aims to
construct a virtual industrial system for education
and research purposes.

REFERENCES

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000,
“Theory of Modeling and Simulation”, Academic
Press, San Diego, 2nd Edition.

Ottjes, J.A., Veeke, H.P.M., 2002, “Prototyping
inProcess Oriented Modeling And Simulation”,
Proceedings of the 16th European Simulation
Multiconference ESM 2002, pp. 20-26, Darmstadt,
Germany

Kuhl,F., Dahmann,J. Weatherly,R.,1999,”Creating
Computer Simulation Systems: An Introduction to
the High Level Architecture”, Prentice Hall, ISBN
0130225118

Veeke, H.P.M., Ottjes, J.A., 2000, “TOMAS: Tool
for Object oriented Modeling And
Simulation”,Proceedings of Advanced Simulation
Technology ASTC 2000, pp. 76-81,
WashingtonDC, SCS International

Adamski, D., Hiller, M., 1998, “CORBA in
Simulation Tasks”, Proceedings of EUROSIM
1998, Helsinki, Finland

Veeke, H.P.M., 20003, “Simulation Integrated
Design for Logistics”, Dissertation Delft University
of Technology, ISBN 90-407-2417-2

