
Proceedings of the Business and Industry Simulation Symposium (ASTC 2000).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

PRODUCTION SCHEDULING OF COMPLEX JOBS
WITH SIMULATION.

Jaap A. Ottjes and Hans P.M. Veeke,
Sub Faculty of Mechanical Engineering and Marine Technology, Fac. OCP

Delft University of Technology
Mekelweg 2, 2628 CD Delft, the Netherlands

e-mail: J.A.Ottjes@wbmt.tudelft.nl , H.P.M.Veeke@wbmt.tudelft.nl

Key words: manufacturing , job shop, project planning,
intelligent agents, discrete simulation.

ABSTRACT
A simulation approach is presented for planning and
scheduling a flow of complex jobs for job shop like
production systems. Machines may have their own
specific restrictions and properties such as relative
production speed, set up characteristics and scheduling
rules. A production job consists of a set of tasks
represented by a directed activity network in which an
activity is defined as a single task to be processed on a
machine. As a consequence a machine may also be an
assembly station. The task duration may be stochastic
having any probability distribution. The task flow and the
task selection for scheduling is governed by agents: Each
machine group acts as an agent combining tasks and
machines. Each task acts as an agent guarding the proper
network sequences of its job by determining when it is
ready for releasing and, after that, controlling its own
scheduling priority. A job acts as an agent repeatedly
updating critical path analysis for its tasks. For that
purpose a separate critical path simulation model is used.
Crucial for the modelling the “process approach” used.
The model is generic with respect to job shop
configuration e.g. number of machine groups and number
of machines per group and also with respect to the job
configuration.

INTRODUCTION

Job shop production planning and scheduling is generally
considered to be complex . This is caused by the large
variation of job composition, the unpredictability of the
job stream and stochastic execution times of tasks. Much
work has been done in this field important issues being to

minimise the time span for a well known set of jobs to be
executed (Chu, 1998), (Pezzella 2000) or to improve
scheduling by batching (Potts, 2000). In (Sikora, 1997), a
multi-agent framework is presented in which agents are
used for ensuring the orderly operations and concerted
decision making among components of the
manufacturing system.

In this work we use straight forward simulation for
planning and scheduling a stream of jobs which may
have stochastic execution times.

The Factory

task

machine groep

machine

Figure 1. the factory, consisting of a
number of machine groups each with a set
of tasks to be executed and a set of
machines or work stations.

mailto:J.A.Ottjes@wbmt.tudelft.nl
mailto:H.P.M.Veeke@wbmt.tudelft.nl

Proceedings of the Business and Industry Simulation Symposium (ASTC 2000).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

The factory consists of an number of machine groups
each containing a set of machines with equal function.
The individual machines however may differ in
specifications such as relative speed and set up times.
Every machine group owns a set containing the released
tasks to be done in this group.

The Jobs
A production job consists of a set of tasks: the taskSet. A
task represents an operation to be executed on a machine
of a specific machine group. The sequence of tasks of
one job is represented by a directed activity network.
That implies that a task can also be an assembly
operation. A task owns an execution time which may be
stochastic. The realisation of an execution time of the
task on a specific machine is obtained by drawing the
execution time from the execution time distribution
multiplied with the speed factor of the machine and
adding the current set up time required. Transportation
tasks are to be modelled by introducing a machine group
with "transport machines" and incorporating the
transportation tasks into the task network structure.

T1

T2

T3

T5

T6

T4

T7

Figure 2. Example of the task structure of a
job. It is modelled as a directed activity
network.

Approach
The approach may be characterised as simulation based
planning and scheduling using agents. Machine groups,
machines , jobs and tasks are equipped with relatively
simple processes and methods to assure the right task
sequences and to accomplish completion times as close
as possible to pre set due times. These due times are
supposed to be known from a global planning for
example using an ERP application. Essential for the easy
straight forward modelling is the use of process oriented
modelling. The process oriented modelling was first used
in the program language "Simula". after that the

technique was used in several simulation packages.
Especially the object oriented approach appears to be
suitable for this process simulation. (Healy, 1997),
(Robert, 1998). The model presented here is being
implemented in the simulation package Tomas (Tool for
Object-oriented Modelling And Simulation), based on
Delphi (Veeke, 1999), the description of which is given
in another paper proposed for this conference. It provides
a simulation class called "TomasElement" with all the
necessary simulation features. Simulation components
are descendants of this class. Further Tomas allows
distributed modelling. First we will go into some
important aspects of process oriented modelling and
define pseudo language for important simulation
commands.

PROCESS ORIENTED MODELLING

The job shop model will be explained in terms of a
process oriented model in pseudo code. The process
oriented approach used in this work can be summarised
into two steps:

Step 1: decompose the system into relevant classes of
components, preferably patterned after the real world
components of the system. A class is characterised by its
attributes. Attributes may be of any data type. The state
of each instance of a class is defined by the state of its
attributes. An instance of a class will be called a
component.

Step 2: distinguish the “living” component classes and
provide their process description. A process description
governs the dynamic behaviour of each instance of the
component class.

A process defines the dynamic behaviour of a
component. In the discrete event two types of activities
are distinguished: Activities which consume no system
time, for example the determination of the next task to be
processed, and activities consuming system time, for
example the actual processing of a task. In the process
description we use “hold” t to indicate that a component
needs t time units to carry out an activity. If such a hold
statement is encountered in the process description, the
process halts until time t has passed and then continuos
its process. In other words the process is waiting for a
specific time event. Analogue to that it is possible for a
process to wait for a state event e.g. for a specific
condition to be fulfilled. In pseudo code this is written as:
"standby" while/until condition. Another time
consuming statement in a process description is

Proceedings of the Business and Industry Simulation Symposium (ASTC 2000).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

“passivate” meaning that a component becomes passive
when this statement is encountered. A passive component
can only be (re)started be a “(re)activate” command
given from another process.

Because there may be several components active at the
same time a sequencing mechanism is necessary to
synchronise the activities and to manage the event
calendar. This mechanism is to be supported by the
simulation package used.

Additional features are queues or sets which may contain
components and, in case of stochastic behaviour,
distributions, modelling for example inter arrival times or
execution times. Queues, sets as well as distributions
may be used as attributes of component classes. Different
models, running at the same time on one or more
computers, may communicate via messages. This can be
done synchrone in case the models use the same time
base or asynchone if model use different times. The latter
will be used in the communication between the job shop
model and the critical path planning model. The
interaction between two models is characterised by two
commands: sendMessage and waitMessage. If during
model execution a component calls sendMessage, then
all models receive the message and decide if they are
addressed. If a model is addressed it checks all of its
components whose last action was a waitMessage and
takes proper action. In next paragraph the job shop and
its dynamics are described in terms of a process oriented
model.

MODELLING

In the job shop model the actual scheduling and
processing of the jobs is simulated.

Table 1: Classes of the job shop model
class process
machineGroup determine task-

machine combination
and start machine

machine execute tasks
job monitor and arrange

critical path planning
of job.

Task take care of timely
release and own
priority

The job shop model uses a separate simulation model
taking care of the critical path analysis of jobs. It will be
referred to as the CP model.

In the job shop model the component classes are defined
in table 1.

In the job shop model the current time is called shopTime

The CP model has its own system time called planTime,
starting with 0 for each planning session. The classe are
summarised in table 2.

Table 2: Classes of the critical path model
Class process
PlanAgent control critical path

analysis for a job.
PlanTask take care of timely

release and simulate
own execution

Both models communicate via messages. Next all classes
of both models will be elaborated in terms of class
descriptions with attributes and process descriptions in
pseudo code. Cyclic processes have a repeat command at
the end meaning that they have to restart their process
from the beginning. If attributes need to be qualified by
their owner this is done by dot notation, for example:
taskToProcess.execTime means execTime of
taskToProcess. Comments are put between braces {}.

Machine Group
The machines are grouped in machine groups. All
machines belonging to the group are contained in the
machineSet which is an attribute of a machine group. Idle
machines also belong to another set: the
machineFreeSet. Each machine group owns a
taskToDoSet in which all tasks to be scheduled are
contained and a reference to the next machine to start. A
machine group owns a process in which the assigning of
tasks to machines is controlled. This may be done in
various ways. An obvious way is to combine task in the
taskToDoSet with the highest priority and the most
suitable machine in the machineFreeSet. In the example
below the machine with the smallest set up time is
chosen. In this context the highest priority is mutually
determined by the tasks themselves using their critical
path data (see task description). In general any decision
rule may be implemented

Proceedings of the Business and Industry Simulation Symposium (ASTC 2000).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

machineGroup
−= machineSet
−= machineFreeSet
−= tasksToDoSet
−= nextTask
−= machineToStart
−= PROCESS

process of a machineGroup
−= standby while machineFreeSet is empty OR

tasksToDoSet is empty
−= call selfArrange of last task in tasksToDoset

{tasks rearranges themselves according priority
criterion}

−= nextTask=first task in tasksToDoSet
−= machineToStart = machine in machineFreeSet with

smallest set-up time with respect to nextTask
−= machineToStart.taskToProcess = nextTask
−= remove nextTask from tasksToDoSet
−= reactivate machineToStart
−= repeat

Machine
A machine has a reference to its machine group and an
reference to the task to be processed. Further all kinds of
specific attributes might be attached such as a factor
giving the relative production speed of the machine
compared with the other machines of the group and set
up information. A machine owns a process simulating the
physical operation of the its tasks. This machine process
is quite simple: after being activated for the first time, it
enters the machineFreeSet and waits (is passive) until it
receives its next taskToProcess and is activated by its
machine group. It leaves the machineFreeSet, completes
the assigned task and repeats its process by re-entering
the machineFreeSet of its group. The execTime of the
task may be composed of several parts such as set-up
time and actual execution time. These times may be
drawn from a distribution or obtained from a data base or
input file with realistic manufacturing data. In case the
model is used for real time scheduling the simulated
machine may be substituted by a real one. Its execution
time then is the real execution time of the real machine.
Using simulation in this way is similar to the approach
discussed in a multi-AGV control system. (Ottjes, 1996).

machine
−= group
−= taskToProcess
−= machine specific attributes
−= PROCESS

process of a machine
−= enter group.machineFreeSet
−= passivate
−= leave group.machineFreeSet
−= hold taskToProcess.execTime
−= reactivate taskToProcess
−= repeat

Job
A job to be processed on the job shop is modelled as an
activity network, the activities being called “tasks”, see
also figure 2. The tasks are present in the taskSet of the
job. Further the job owns its due date and its
earliestReadyDate. The latter is determined by a critical
path analysis of the job assuming infinite production
capacity and average task execution times. This analysis
is controlled by the process of the job and repeatedly
performed. For each planning session the job process
provides the current states of the remaining task. The
remaining execTimes of tasks, which are already in
process on a machine, are estimated by interpolation. The
replanningCriterion of the job may be periodic or trigged
by the job state for example its tardiness.
The job process communicates with the critical path
planning model, which itself is a simulation model with
its own time base using messages. In terms of sequencing
this means that the job shop model 'waits' until the
waitMessage command has been completed. In the mean
time the CP model performs the planning of the job and
returns the results to the job process. The job then
updates its ealiestReadyDate and all earlyStart and
latestFinish data of the tasks which are still waiting for
execution.

job
−= taskSet
−= dueDate
−= earliestReadyDate
−= replanningCriterion
−= PROCESS

process of a job
−= standby while replanningCriterion = false
−= write shopTime and data of job and its remaining

tasks to file ‘x’
−= sendMessage ‘x’ to planAgent {pass the file name

'x'}
−= waitMessage {wait for ready signal of planAgent}

Proceedings of the Business and Industry Simulation Symposium (ASTC 2000).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

−= read updated job data and task data and update job
and its tasks

−= repeat

Task
A task has a reference to the job it belong to and a
reference to the machine group it has to be processed on.
Further it owns an execution time which may be
stochastic. The task network structure is defined using
two sets: the preTaskSet and the afterTaskSet. The
preTaskSet contains all directly preceding tasks. A task
only may be released if all tasks in its preTaskSet are
ready. So task6 (T6) in figure 2 only may release itself if
all tasks (T2, T3 and T4) in its preTaskSet are ready. The
afterTaskSet contains directly succeeding tasks. In other
words all tasks which are waiting for the completion of
this task. If task 2 (T2) in figure 2 is ready T5 and T6,
being the tasks in his afterTaskSet, may be released as
far as T2 is concerned. T6 however has to wait for
completion of T3 and T4 too. In this way any directed
activity network can be represented. Each task owns a
process which guards its proper sequencing and a
procedure called selfArrange which is used to take the
right position in the tasksToDoSet of its machine group.
Further a task has a planned earliest start, latest finish
and free float from the last critical path analysis
performed on its job. In order to determine its production
priority a priority function is added. As an example this
function may return the sum of the jobslack + the
freeFloat of the task. A very interesting way of defining
mutual task priorities is using a fuzzy criteria as
described by [Sakawa, 2000].

task
−= job
−= preTaskSet
−= afterTaskSet
−= execTime
−= execGroup
−= earliestStart
−= latestFinish
−= freeFloat {latestFinish-earliestStart- average

execTime}
−= function prioCriterion
−= procedure selfArrange {take own position in

tasksToDoSet according to prioCriterion}
−= PROCESS

process of a task
−= standby while preTaskSet is not empty
−= enter tasksToDoSet of execGroup

−= passivate
−= leave all preTaskSets of the tasks in afterTaskSet
−= terminate

Procedure selfArrange of task
−= while prioCriterion < prioCriterion of predecessor in

tasksToDoSet then change places
−= if not first in tasksToDoSet call selfArrange of

predecessor in taskToDoSet
−= exit

PlanAgent and PlanTask

The next two classes form the CP model. It consists of a
planAgent controlling the planning and a class planTask
being very similar to the task class in the job shop model.

planAgent
−= activeTaskSet
−= PROCESS

The planAgent initiates and controls the planning run
with the CP model.

process of the planAgent
−= waitMessage {communication with jobs of the job

shop model}
−= read shopTime and data of job and its tasks from file

'x'
−= create planTasks (+ attributes)
−= put all planTasks into the activeTaskSet
−= activate all planTasks
−= standby until activeTaskSet is empty
−= earliestReadyDate=shopTime+planTime
−= reset planTime =0
−= put all tasks back into the activeTaskSet
−= reactivate all planTasks
−= standby until activeTaskSet is empty
−= write new job and task data to file 'x'
−= sendMessage 'x'
−= repeat

The planTask, like in the job shop model, waits until it
may be released. Then, in stead of waiting for execution
by a machine, it executes itself using its average
execTime. If all planTasks are finished (activeTaskset =
empty), the make span and the early start times are

Proceedings of the Business and Industry Simulation Symposium (ASTC 2000).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

known. Then the planning process is performed vice
versa, in other words the job is broken down. This gives
the latest finish data for the tasks.

planTask
−= preTaskSet
−= afterTaskSet
−= tempTaskSet
−= averageExecTime
−= earliestStart
−= latestFinish
−= PROCESS

process of a planTask
−= put all tasks of preTaskSet into tempTaskSet
−= standby until tempTaskSet is empty
−= earliestStart=shopTime+planTime
−= hold averageExectime
−= leave all tempTaskSets of the tasks in afterTaskSet
−= leave activeTaskset
−= passivate
−= {now reverse simulation: break down the project}
−= put all tasks of afterTaskSet into tempTaskSet
−= standby until tempTaskSet is empty
−= latestFinish = earliestReadyDate-planTime
−= hold averageExectime
−= leave all TempTaskSets of tasks in preTaskSet
−= leave activeTaskset
−= terminate

CONCLUSIONS AND FURTHER WORK

A process oriented structure has been proposed for
modelling job shop production of jobs which are
represented as a directed activity network of tasks. Tasks
govern their own release and priority claims, acting like
agents. Each job guards its own progress and initiates, if
necessary, a critical path planning action for its
remaining tasks. For this purpose a planning model is
proposed also based on simulation. Machine group
agents assign machines to tasks and machines perform
the physical task execution. The model is generic with
respect to machine configuration and job composition. A
machine may be an assembly station. Further the model
is flexible with respect to specific machine properties,
scheduling rules and stochastic task execution times. The
model is being implemented to be used for off line
developing and testing planning and scheduling rules and
for on line controlling actual production.

REFERENCES

Chu, C. J.M. Proth and M. Wang. 1998 "Improving job
shop schedules through critical pairwise exchanges."
International Journal of Production research 36 (1998)
383-694.

Healy, J. R.A. Kilgore 1997. "Silk,: A Java-Based
Process Simulation Language". Proceedings of the 1997
Winter Simulation Conference, IEEE,

Ottjes, J.A., F.P.A. Hogedoorn; "Design and control of
multi-AGV systems: reuse of simulation software."
Proceedings of 8th European simulation symposium.
Society for Computer Simulation Internationa Genoa
1996, p. 461-465. ISBN: 1-56555-099-4

Pezzella, F and E. Merelli. 2000. "A tabu search method
guided by shifting bottleneck for the job shop scheduling
problem." European Journal of Operational research
120 (2000) 297-310.
Piscataway NJ

Potts, C and M.Y. Kovalyov. 2000. "Scheduling with
batching: A review." European Journal of Operational
research 120 (2000) 228-249.

Robert, C.A., Dessouky, M. 1998. “An Overview of
Object-Oriented Simulation”. Simulation vol:70:6, pp.
359-368. 1998.

Sakawa, M and R. Kubota. 2000 "Fuzzy programming
for multiobjective job shop scheduling with fuzzy
processing time and fuzzy duedate through genetic
algorithms." European Journal of Operational Research
120 (2000) 393-407

Sikora, T.T. , M. Shaw. 1997. "Coordination
Mechanisms for Multi-Agent Information Systems:
Applications to Integrated Manufacturing Scheduling."
IEEE Transactions on Engineering Management, Vol
44, (May 1997)

Veeke, H.P.M. and Ottjes, J.A. 1999. Problem oriented
modelling and simulation, Proc. 1999 summer
computersimulation conference (SCS’99) Chicago,
Illinois pp.110-114, ISBN 1-56555-173-7

	ABSTRACT
	INTRODUCTION
	The Factory
	The Jobs
	Approach

	PROCESS ORIENTED MODELLING
	MODELLING
	Machine Group
	Machine
	Job
	Task
	Procedure selfArrange of task
	PlanAgent and PlanTask

	CONCLUSIONS AND FURTHER WORK
	REFERENCES
	Veeke, H.P.M. and Ottjes, J.A. 1999. Problem oriented modelling and simulation, Proc. 1999 summer computersimulation conference (SCS’99) Chicago, Illinois pp.110-114, ISBN 1-56555-173-7

