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ABSTRACT 
A simulation approach is presented for planning and 
scheduling a flow of complex jobs for job shop like 
production systems. Machines may have their own 
specific restrictions and properties such as relative 
production speed, set up characteristics and scheduling 
rules. A production job consists of a set of tasks 
represented by a directed activity network in which an 
activity is defined as a single task to be processed on a 
machine. As a consequence a machine may also be an 
assembly station. The task duration may be stochastic 
having any probability distribution. The task flow and the 
task selection for scheduling is governed by agents: Each 
machine group acts as an agent combining tasks and 
machines. Each task acts as an agent guarding the proper 
network sequences of its job by determining when it is 
ready for releasing and, after that, controlling its own 
scheduling priority. A job acts as an agent repeatedly 
updating critical path analysis for its tasks. For that 
purpose a separate critical path simulation model is used. 
Crucial for the modelling the “process approach” used. 
The model is generic with respect to job shop 
configuration e.g. number of machine groups and number 
of machines per group and also with respect to the job 
configuration.  

INTRODUCTION 
 
Job shop production planning and scheduling is generally 
considered to be complex . This is caused by the large 
variation of job composition, the unpredictability of the 
job stream and stochastic execution times of tasks.  Much 
work has been done in this field important issues being to 

minimise the time span for a well known set of jobs to be 
executed (Chu, 1998), (Pezzella 2000) or to improve 
scheduling by batching (Potts, 2000). In (Sikora, 1997), a 
multi-agent framework is presented  in which agents are 
used for ensuring the orderly operations and concerted 
decision making among components of the 
manufacturing system. 
 
In this work we use straight forward simulation for 
planning and scheduling a stream of jobs which may 
have stochastic execution times. 

The Factory 
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Figure 1. the factory, consisting of a 
number of machine groups each with a set 
of tasks to be executed and a set of 
machines or work stations. 
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The factory consists of an number of machine groups 
each containing a set of machines with equal function. 
The individual machines however may differ in 
specifications such as relative speed and set up times. 
Every machine group owns a set containing the released 
tasks to be done in this group.   
 

The Jobs 
A production job consists of a set of tasks: the taskSet. A 
task represents an operation to be executed on a machine 
of a specific machine group. The sequence of tasks of 
one job is represented by a directed activity network. 
That implies that a task can also be an assembly 
operation. A task owns an execution time which may be 
stochastic. The realisation of an execution time of the 
task on a specific machine is obtained by drawing the 
execution time from the execution time distribution 
multiplied with the speed factor of the machine and 
adding the current set up time required. Transportation 
tasks are to be modelled by introducing a machine group 
with "transport machines" and incorporating the 
transportation tasks into the task network structure. 
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Figure 2. Example of the task structure of a 
job. It is modelled as a directed activity 
network. 

Approach 
The approach may be characterised as simulation based 
planning and scheduling using agents. Machine groups, 
machines , jobs and tasks are equipped with relatively 
simple processes and methods to assure the right task 
sequences and to accomplish completion times as close 
as possible to pre set due times. These due times are 
supposed to be known from a global planning for 
example using an ERP application. Essential for the easy 
straight forward modelling is the use of process oriented 
modelling. The process oriented modelling was first used 
in the program language "Simula". after that the 

technique was used in several simulation packages.  
Especially the object oriented approach appears to be 
suitable for this process simulation. (Healy, 1997), 
(Robert, 1998). The model presented here is being 
implemented in the simulation package Tomas (Tool for 
Object-oriented Modelling And Simulation), based on 
Delphi (Veeke, 1999), the description of which is given 
in another paper proposed for this conference. It provides 
a simulation class called "TomasElement" with all the 
necessary simulation features. Simulation components 
are descendants of this class. Further Tomas allows 
distributed modelling. First we will  go into some 
important aspects of process oriented modelling and 
define pseudo language for important simulation 
commands. 

PROCESS ORIENTED MODELLING 
 
The job shop model will be explained in terms of a 
process oriented model in pseudo code. The process 
oriented approach used in this work can be summarised 
into two steps: 
 
Step 1: decompose the system into relevant classes of 
components, preferably patterned after the real   world 
components of the system. A class is characterised by its 
attributes. Attributes may be of any data type. The state 
of each instance of a class is defined by the state of its 
attributes. An instance of a class will be called a 
component. 
 
Step 2: distinguish the “living” component classes and 
provide their process description. A process description 
governs the dynamic behaviour of each instance of the 
component class. 
 
A process defines the dynamic behaviour of a 
component. In the discrete event two types of activities 
are distinguished: Activities which consume no system 
time, for example the determination of the next task to be 
processed, and activities consuming system time, for 
example the actual processing of a task. In the process 
description we use  “hold” t to indicate that a component 
needs t time units to carry out an activity. If  such a hold 
statement is encountered in the process description, the 
process halts until  time t has passed and then continuos 
its process. In other words the process is waiting for a 
specific time event. Analogue to that it is possible for a 
process to wait for a state event e.g. for a specific 
condition to be fulfilled. In pseudo code this is written as: 
"standby" while/until condition. Another time 
consuming statement in a process description is 
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“passivate” meaning that a component becomes passive 
when this statement is encountered. A passive component 
can only be (re)started be a “(re)activate”  command 
given from another process.  
 
Because there may be several components active at the 
same time a sequencing mechanism is necessary to 
synchronise the activities and to manage the event 
calendar. This mechanism  is to be supported by the 
simulation package used. 
 
Additional features are queues or sets which may contain 
components and, in case of stochastic behaviour, 
distributions, modelling for example inter arrival times or 
execution times. Queues, sets as well as distributions 
may be used as attributes of component classes. Different 
models, running at the same time on one or more 
computers, may communicate via messages. This can be 
done synchrone in case the models use the same time 
base or asynchone if model use different times. The latter 
will be used in the communication between the job shop 
model and the critical path planning model. The 
interaction between two models is characterised by two 
commands: sendMessage and waitMessage.  If during 
model execution a component calls sendMessage, then 
all models receive the message and decide if they are 
addressed. If a model is addressed it checks all of its 
components whose last action was a waitMessage and 
takes proper action. In next paragraph the  job shop and 
its dynamics are described in terms of  a process oriented 
model. 

MODELLING 
 
In the job shop model the actual scheduling and 
processing of the jobs is simulated.  
 
 

Table 1: Classes of the job shop  model 
class process 
machineGroup determine task-

machine combination 
and start machine 

machine  execute tasks 
job   monitor and arrange 

critical path planning 
of job. 

Task take care of timely 
release and own 
priority 

 

The job shop model uses a separate simulation model 
taking care of the critical path analysis of jobs. It will be 
referred to as the CP model.  
 
In the job shop model the component classes are defined 
in table 1. 
 
In the job shop model the current time is called shopTime 
 
The CP model has its own system time called planTime, 
starting with 0 for each planning session. The classe are 
summarised in table 2. 
 
 

Table 2: Classes of the critical path  model 
Class process 
PlanAgent   control critical path 

analysis for a job. 
PlanTask  take care of timely 

release and simulate 
own execution  

 
Both models communicate via messages. Next all classes 
of both models will be elaborated in terms of class 
descriptions with attributes and process descriptions in 
pseudo code. Cyclic processes have a repeat command at 
the end meaning that they have to restart their process 
from the beginning. If attributes need to be qualified by 
their owner this is done by dot notation, for example: 
taskToProcess.execTime means execTime of  
taskToProcess. Comments are put between braces {}. 

Machine Group 
The machines are grouped in machine groups. All 
machines belonging to the group are contained in the 
machineSet which is an attribute of a machine group. Idle 
machines also belong to another set: the  
machineFreeSet. Each machine group owns a 
taskToDoSet in which all tasks to be scheduled are 
contained and a reference to the next machine to start. A 
machine group owns a process in which the assigning of 
tasks to machines is controlled. This may be done in 
various ways. An obvious way is to combine task in the 
taskToDoSet with the highest priority and the most 
suitable machine in the machineFreeSet. In the example 
below the machine with the smallest set up time is 
chosen. In this context the highest priority is mutually 
determined by the tasks themselves using their critical 
path data (see task description). In general any decision 
rule may be implemented  
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machineGroup 
−= machineSet 
−= machineFreeSet 
−= tasksToDoSet 
−= nextTask 
−= machineToStart 
−= PROCESS 
 
process of a machineGroup 
−= standby while machineFreeSet is empty OR 

tasksToDoSet is empty 
−= call selfArrange of last task in tasksToDoset 

{tasks rearranges themselves according priority 
criterion} 

−= nextTask=first task in tasksToDoSet 
−= machineToStart = machine in machineFreeSet with 

smallest set-up time with respect to nextTask 
−= machineToStart.taskToProcess = nextTask 
−= remove nextTask from tasksToDoSet 
−= reactivate machineToStart 
−= repeat 

Machine 
A machine has a reference to its machine group and an 
reference to the task to be processed. Further all kinds of 
specific attributes might be attached such as a factor 
giving the relative production speed of the machine 
compared with the other machines of the group and set 
up information. A machine owns a process simulating the 
physical operation of the its tasks. This machine process 
is quite simple: after being activated for the first time, it 
enters the machineFreeSet and waits  (is passive) until it 
receives its next taskToProcess and is activated by its 
machine group. It leaves the machineFreeSet, completes 
the assigned task and repeats its process by re-entering 
the machineFreeSet of its group. The execTime of the 
task may be composed of several parts such as set-up 
time and actual execution time. These times may be 
drawn from a distribution or obtained from a data base or 
input file with realistic manufacturing data. In case the 
model is used for real time scheduling the simulated 
machine may be substituted by a real one. Its execution 
time then is the real execution time of the real machine.  
Using simulation in this way is similar to the approach 
discussed in a multi-AGV control system. (Ottjes, 1996). 
 
machine 
−= group 
−= taskToProcess 
−= machine specific attributes 
−= PROCESS 

 
process of  a machine 
−= enter group.machineFreeSet 
−= passivate 
−= leave group.machineFreeSet 
−= hold taskToProcess.execTime 
−= reactivate taskToProcess 
−= repeat 

Job 
A job to be processed on the job shop is modelled as an 
activity network, the activities being called “tasks”, see 
also figure 2. The tasks are present in the taskSet of the 
job. Further the job owns its due date and its 
earliestReadyDate. The latter is determined by a critical 
path analysis of the job assuming infinite production 
capacity and average task execution times. This analysis 
is controlled by the process of the job and repeatedly 
performed. For each planning session the job process 
provides the current states of the remaining task. The 
remaining execTimes of tasks, which are already in 
process on a machine, are estimated by interpolation. The 
replanningCriterion of the job may be periodic or trigged 
by the job state for example its tardiness.  
The job process communicates with the critical path 
planning model, which itself is a simulation model with 
its own time base using messages. In terms of sequencing 
this means that the job shop model 'waits' until the 
waitMessage command has been completed. In the mean 
time the CP model performs the planning of the job and 
returns the results to the job process. The job then 
updates its ealiestReadyDate and all earlyStart and 
latestFinish data of the tasks which are still waiting for 
execution. 
 
job 
−= taskSet 
−= dueDate 
−= earliestReadyDate 
−= replanningCriterion 
−= PROCESS 
 
 
process of a job 
−= standby while replanningCriterion = false 
−= write shopTime and data of job and its remaining 

tasks to file ‘x’ 
−= sendMessage ‘x’ to planAgent {pass the file name 

'x'} 
−= waitMessage {wait for ready signal of planAgent} 
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−= read updated job data and task data and update job 
and its tasks 

−= repeat 

Task 
A task has a reference to the job it belong to and a 
reference to the machine group it has to be processed on. 
Further it owns an execution time which may be 
stochastic. The task network structure is defined using 
two sets: the preTaskSet and the afterTaskSet. The 
preTaskSet contains all directly preceding tasks. A task 
only may be released if all tasks in its preTaskSet are 
ready. So task6 (T6) in figure 2 only may release itself if  
all tasks (T2, T3 and T4) in its preTaskSet are ready. The 
afterTaskSet contains directly succeeding tasks. In other 
words all tasks which are waiting for the completion of 
this task. If task 2 (T2) in figure 2 is ready T5 and T6, 
being the tasks in his afterTaskSet,  may be released as 
far as T2 is concerned. T6 however has to wait for 
completion of T3 and T4 too. In this way any directed 
activity network can be represented. Each task owns a 
process which guards its proper sequencing and a 
procedure called selfArrange which is used to take the 
right position in the tasksToDoSet of its machine group. 
Further a task has a planned earliest start, latest finish 
and free float from the last critical path analysis 
performed on its job. In order to determine its production 
priority a priority function is added. As an example this 
function may return the sum of the jobslack + the 
freeFloat of the task. A very interesting way of defining 
mutual task priorities is using a fuzzy criteria as 
described by [Sakawa, 2000]. 
 
task 
−= job 
−= preTaskSet 
−= afterTaskSet 
−= execTime 
−= execGroup 
−= earliestStart 
−= latestFinish 
−= freeFloat {latestFinish-earliestStart- average 

execTime}  
−= function prioCriterion  
−= procedure selfArrange {take own position in 

tasksToDoSet according to prioCriterion}  
−= PROCESS 
 
process of a task 
−= standby while preTaskSet is not empty  
−= enter tasksToDoSet of execGroup  

−= passivate 
−= leave all preTaskSets of the tasks in afterTaskSet  
−= terminate 

 
Procedure selfArrange of task 
−= while prioCriterion < prioCriterion of predecessor in 

tasksToDoSet then change places 
−= if not first in tasksToDoSet call  selfArrange of 

predecessor in taskToDoSet 
−= exit 
 
 
PlanAgent and PlanTask 
 
The next two classes form the CP model. It consists of a 
planAgent controlling the planning and a class planTask 
being very similar to the task class in the job shop model.  
 
 
planAgent  
−= activeTaskSet 
−= PROCESS 
 
The planAgent initiates and controls the planning run 
with the CP model. 
 
process of the planAgent 
−= waitMessage {communication with jobs of the job 

shop model} 
−= read shopTime and data of job and its tasks from file 

'x'  
−= create planTasks (+ attributes) 
−= put all planTasks into the activeTaskSet 
−= activate all planTasks 
−= standby until activeTaskSet is empty 
−= earliestReadyDate=shopTime+planTime 
−= reset planTime =0 
−= put all tasks back into the activeTaskSet 
−= reactivate all planTasks 
−= standby until activeTaskSet is empty 
−= write new job and task data to file 'x' 
−= sendMessage 'x' 
−= repeat 
 
The planTask, like in the job shop model, waits until it 
may be released. Then, in stead of waiting for execution 
by a machine, it executes itself using its average 
execTime. If all planTasks are finished (activeTaskset = 
empty),  the make span and the early start times are 
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known. Then the planning process is performed vice 
versa, in other words the job is broken down. This gives 
the latest finish data for the tasks. 
 
planTask 
−= preTaskSet 
−= afterTaskSet 
−= tempTaskSet 
−= averageExecTime 
−= earliestStart 
−= latestFinish 
−= PROCESS 
 

 
process of a planTask  
−= put all tasks of preTaskSet into tempTaskSet 
−= standby until tempTaskSet  is empty  
−= earliestStart=shopTime+planTime 
−= hold averageExectime 
−= leave all tempTaskSets of the tasks in afterTaskSet 
−= leave activeTaskset 
−= passivate  
−= {now reverse simulation: break down the project} 
−= put all tasks of afterTaskSet into tempTaskSet 
−= standby until tempTaskSet is empty  
−= latestFinish = earliestReadyDate-planTime 
−= hold averageExectime 
−= leave all TempTaskSets of tasks in preTaskSet 
−= leave activeTaskset 
−= terminate 

CONCLUSIONS AND FURTHER WORK 
 
A process oriented structure has been proposed for 
modelling job shop production of jobs which are  
represented as a directed activity network of tasks. Tasks 
govern their own release and priority claims,  acting like 
agents. Each job guards its own progress and initiates, if 
necessary, a critical path planning action for its 
remaining tasks. For this purpose a planning model is 
proposed also based on simulation. Machine group 
agents assign machines to tasks and machines perform 
the physical task execution. The model is generic with 
respect to machine configuration and job composition.  A 
machine may be an assembly station. Further the model 
is flexible with respect to specific machine properties, 
scheduling rules and stochastic task execution times. The 
model is being implemented to be used for off line 
developing and testing planning and scheduling rules and 
for on line controlling actual production.  
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